Categories
Cold War Soviet Prototypes WW2 Soviet Prototypes

Object 704

USSR (1945)
Heavy Self-Propelled gun – 1 prototype built

The SU-152 and ISU-152 were, and still are, well known for their massive guns and impressive claimed capabilities against German tanks such as the Tiger and Panther. That is how they got their nickname “Zveroboy”, meaning beast killer. However, that was more related to propaganda than their actual usefulness as tank destroyers. Their massive 152 mm guns, while very effective if they hit the target, were rather inaccurate at long range, slow to aim and to reload, and limited in traverse by their mounting in a superstructure. These guns were not well suited for a tank destroyer. The SU-152 and ISU-152 were not, in fact, tank destroyers, but assault guns, meant to help Soviet attacks break down enemy defenses and strongpoints. Yet, for assault guns, their protection was more often than not, quite lacking. With the start of production of the Kirovets-1 (Object 703, or better known as IS-3), the opportunity arose to improve the “Beast Killers”, now focusing on protection. This vehicle was to become the Object 704 or Kirovets-2. It is also called ISU-152 model 1945 in Russian literature, however, it is likely that the Object 704 was never referred to as such in the short life it had, and could be a modern name, possibly invented at Kubinka, according to Russian historian Yuri Pasholok.

Despite the success of the ISU-152, its weak armor, tall silhouette, and inconvenient muzzle blast made the Soviets seek a replacement. Ironically, they never got one and the ISU-152 served decades after WWII. Source: Pinterest

Development

Due to the problems of the ISU-152, proposals came as early as 1944 from GABTU (Main Directorate of Armed forces) to the SKB-2 plant to upgrade the vehicle, however, little materialized. Then, work started on a new IS tank- the Kirovets 1 (IS-3).

There were also plans to modernize the gun on the ISU-152 as well. In 1943, the GABTU Artillery section stated that the 152.4 mm ML-20S howitzer was not suited for use on a self-propelled gun. The issues on the ML-20 naturally reflected on the battle performance of the ISU-152. An example was the TsAKB slotted muzzle brake kicking up a lot of dust, almost blinding the gunner after firing, and more importantly, revealing the vehicle’s position.

Thus, the GABTU put out a series of requirements for the modernization of the weapon. Firstly, this included the removal of the muzzle brake, changes to the breech, and improvements to the recoil system. OKB-172 was assigned to develop the upgrade by the 13th of January, 1944, headed by M. Tsirulnikov. The new gun was to be named ML-20SM, M standing for modernized. Blueprints were ready by the 1st of March of the same year and, by the 10th of March, the prototype was built in Factory No.172. The very next day, firing trials were undertaken, but after the 33rd shot, testing was halted due to poor operation of the new breech. Further tests were made through March until the 14th of April when it passed the test for rapid consecutive firing of 60 shots, which it fired in 39 minutes. While that might seem like a lot, the initial firing time estimation for them was 60 minutes (1 round per minute), the gun averaging 1.5 rounds per minute. Testing continued into May, the gun firing a total of 249 rounds, out of which 196 were with high explosive charges (for direct firing). The average rate of fire over the entire testing period was an impressive 2.9 rounds per minute. Factory testing of this gun continued until September 1944. Due to the high rate of fire and no muzzle brake, it was decided on the 2nd of October to mount the gun inside an ISU-152. Consequently, the gun was shipped off to Chelyabinsk, but, when it arrived in the middle of October 1944, it was unfinished! At the end of 1944, the GABTU stated that the gun needed urgent work and that factory No.172 workers should be sent to ChKZ. This only happened by mid-February 1945, when the battlefield was different and the IS-3 was approaching mass production, making the ISU-152 chassis archaic.

The massive muzzle blast made concealing the vehicle virtually impossible after firing. It also blinded the crew, so following the shot and keeping track of the target was a challenge. Source: Weapons of Victory

In fact, ChKZ had started working on an SPG based on the Kirovets-1 at the beginning of 1945. It received the name Kirovets-2. The chief engineer and designer was L.S. Trojanov.

A letter from Engineer-Lieutenant Colonel Markin, a representative of the GABTU in ChKZ, was sent to GABTU chief Engineer-Lieutenant Colonel Blagonravov on this topic. It stated that the Kirov factory (SKB-2 to be precise) was working on a Kirovets-1 based SPG, stating its armor thickness level and other features, namely that it used the same transmission, running gear and engine as the Kirovets-1. Most interesting is that, according to the letter, work on the prototype started on the 1st of February, 1945. The letter was sent 10th of February, 1945.

The Kirovets-2, later named Object 704, was an attempt to fix the main issues with the ISU-152, yet created more problems and was plagued by bureaucratic wrangling. Source: Topwar.ru

ChKZ also announced S.P. Gurenko, chief designer of Factory No. 172, saying that SKB-2 was working on such a vehicle. This led to engineers from No. 172 coming over to Chelyabinsk between the 14th and 20th of February. During this time, SKB-2 had sent the blueprints of the Kirovets-2 over to Factory No. 200 as well. Also in mid-February, the hull of the SPG was ready in ChKZ.

On the 3rd of March, a meeting was held on the topic of improving the Kirovets-2. The main issue brought up was fitting the ML-20SM, originally built for the ISU-152, into the Kirovets-2. The gun had been sitting for quite a few months in a hall somewhere in ChKZ. Other points discussed were further increasing the armor and thickening it from 100 to 150 mm (3.9 – 5.9 inches) and replacing the panoramic sight with a Hertz sight from a 76 mm Mod. 1943 ZiS-3 gun, as it was smaller. The telescopic sight was also changed for a smaller TSh-17. The traverse mechanism was altered and, most importantly, it was decided to give the Kirovets-2 a co-axial DShK heavy machine gun, mounted on the right side of the main gun.

The hull of the Kirovets-2 was ready in spring, but the gun was not mounted until halfway through June 1945. This delay was caused by bureaucratic disputes regarding the serial production of the ML-20SM gun. The tank became the Object 704, yet the Kirovets-2 name stuck with factory workers.

Layout and Design

The design of the Kirovets-2 was unique, having little resemblance to previous Soviet heavy SPGs. It still had a frontal mounted casemate, where the turret and pike nose of the IS-3 used to be. Due to the aim to improve the armor protection to the same level as the IS-3, the armor plates were thickened and angled throughout the casemate. On the ISU-152, the gun mantlet was a large frontal weak spot, yet on the Object 704, it was the thickest part of the tank. Interesting to add is that the bottom of the side casemate angled inwards a lot more than it appears to. The almost flat triangle shape part of the side superstructure is actually just a thin sheet of metal.

Although the IS-3 chassis was used, there were still some changes made. Namely, the engine plate was different and the exhaust pipe layout was the same as on the Object 701. It is unclear if this was done to save pieces for the production of the IS-3 or it was intentionally designed as such. An additional small construction detail is the use of several track types, satisfactory for a prototype built in a short period of time. There were 86 tracks per side, each track was 650 mm wide and they were connected by a single pin. The engine was the same V-2-IS engine, producing 520 hp, and the running gear and transmission were kept the same. The transmission was a multi-disc dry friction clutch. The gearbox was a 4+1 dual stage (high/low) manual, for a total of 8 gears forwards and 2 in reverse. The brakes were still planetary rotation mechanisms.

The hull is often said to be identical to that of the IS-3, but the exhausts and engine plate design are different. Note the thinness of the triangular-shaped side plates on the hull can be discerned here. Source: Yuri Pasholok

Despite the external differences, inside, the Object 704 was very similar to the ISU-152. It still had a crew of five; driver, gunner, commander, loader, and breech operator. The heavily angled sidewalls caused major internal ergonomic problems, namely storage for the huge two-part ammunition, which weighed 48.78 kg (107 lb) for the AP and 43.56 kg (96 lb) for the HE, no easy task to load in a tight space. Sacrificing crew comfort and ergonomics for protection was quite common in the late war and post-war Soviet tank doctrine.

Object-704 during testing. The extreme angles of the fighting compartment can be seen. Source: Pinterest

The vehicle’s silhouette was much shorter than that of the ISU-152, now being only 2,240 mm (88 inches) tall, but kept the same width.

Main Armament

The modernized ML-20SM lacked a muzzle brake, which improved the visibility and kicked-up less dust after firing. However, the recoil grew considerably, namely by 900 mm, so a recoil brake was added. The gun had +18° of gun elevation and a shockingly poor -1.45° of depression. The horizontal traverse was not much better at a very limited total of just 11° (5.5° on each side). The new gun fired the same two-part HE weighing 43.56 kg (96 lb) and AP ammunition, weighing 48.78 kg (107 lb), and had very similar ballistics to the standard ML-20S. The HE rounds had a muzzle velocity of 655 m/s, while the AP had 600 m/s. The gun could hit a 2.5 to 3-meter tall target reliably from 800 to 1,000 meters (874 to 1,093 yards), but had a direct fire range of 3.8 km (2.36 miles) and an indirect fire range was 13 km (8 miles).

When conducting indirect firing, the Hertz panoramic scope was taken out through the gunner’s hatch. The practical rate of fire is contradicting and ranges from one to a bit under three rounds a minute. A quick reload was not necessary for such a self-propelled gun, especially considering the terrible ammunition count inside the Kirovets-2; just 20 (19 according to the trial report, although the extra round could be loaded to be 19 +1)) rounds. These were placed on both sidewalls of the fighting compartment, and the charges were placed on the right wall and underneath the breech.

View of the breech of the ML-20SM. Note part of the loader’s tray to the bottom left and the coaxial DShK machine gun to the right of the gun. The manual traverse can also be seen, which was to be operated by the breech operator. Source: Yuri Pasholok

Secondary Armament

The vehicle was equipped with two 12.7 mm DShK heavy machine guns, one coaxially mounted and one on the roof, with 300 spare rounds of ammunition inside (600 according to Kubinka). There was a chute for the ammunition belt to slide over the main gun and into the machine gun.

The roof-mounted DShK was for anti-aircraft use and was mounted on a rotating ring over the loader’s hatch. The ring could swivel over and next to the hatch. The machine gun itself could also pivot on its mount. A collimating K-10T sight was mounted on the gun for easier aiming against aircraft.

For the defense of the 5 crew members, they were equipped with PPSh or PPS submachine guns. Some F-1 grenades could also be mounted on the sidewall, between the commander and breech operator.

Crew

The Object 704 had a crew of 5; driver, commander, gunner, loader, and breech operator. They would communicate with each other with a TPU-4F intercom, having a headset and a microphone. This was essential, as the crew sat quite far away from each other and communication was key in coordinating aiming and directions. Every crew member had his own entry and exit hatch on the roof of the vehicle.

The driver was located higher up in the hull than in the ISU-152, by 600 to 700 mm. Consequently, he did not have his own hatch in the front plate, instead, his vision relied on the single movable MK-4 periscope in his hatch, on the roof. As could be anticipated by such an arrangement, this was not enough, giving the driver rather poor vision when buttoned up. He was, however, also able to open the hatch (by sliding it to the side) and stick his head out in non-lethal environments. To control the tank, he had two mechanical tillers. To his right was the gearshift and the shift for the high/low gear ranges. On a good note, the driver no longer sat next to a large fuel tank, like on the ISU-152, which was good for morale.

The gunner sat behind and to the right of the driver, on a seat attached directly to the gun. There, he had the elevation control hand crank, as well as the trigger, his Hertz panoramic sight, and the 2.5x (other sources claim 4x) magnification TSh-17 sights. This sight was adequate for firing up to 1500 meters (0.93 miles). As previously mentioned, for indirect firing, the gunner’s hatch had to be opened and the sight raised through it. Both sights were illuminated for conducting nocturnal firing. Directly under the breech block was a floor-mounted escape hatch, for a total of six hatches.

The commander was on the opposite side of the driver, also having just one MK-4 periscope for external vision. He was responsible for the radio, placed right in front of him, on the frontal armor plate. This radio was a 10PK-26 radio, connected to the 24 volts onboard power transmitter. The frequency was 3.75 Mhz to 6 Mhz, with a wavelength varying between 50 to 80 meters. While stationary, the range was between 20 to 25 km, and it decreased slightly while on the move. The radio also allowed for communication on two fixed frequencies, simultaneously. The coaxial machine gun was also his responsibility, most likely having to fire it as well. Yet the traverse of the main gun was controlled by the breech operator and elevation by the gunner, so aiming would have been a coordination challenge.

Handling the massive shells was done by the loader. The shells were stacked on the side walls. He was also assigned operation of the anti-air DShK on top of his hatch. To aid him in loading, he had a loading tray, attached to the gun. A round would be rested on it until it was ready to load again. This meant that the loader did not have to hold the round until the breech was open again, a little but crucial detail considering the round’s weight. There were 12 rounds on the wall next to him, while the other 7 were on the other side, by the breech operator, and were a challenge to extract.

Perhaps the most curious crew member position is the breech operator. It is important to note that the breech design was quite ancient and could not open automatically. The breech operator would open the breech while the loader was manhandling the rounds into the gun. Then he would close it. He could assist the loader with charge amounts as well. This was done to decrease the strain on the loader, as it was no easy feat.

While testing reports were quite satisfied with the positions of the crew, a few issues were brought up. The angled sidewalls made storage of ammunition complex and accessing them was cumbersome. Let alone moving them out and into the gun, considering their weight. The elevation of the driver’s position also brought drawbacks, namely, he would bounce around when the tank was moving on poor terrain. This was strenuous on the driver. To boost morale and improve living conditions, two fans were placed behind the gun, to ventilate and remove toxic fumes, as well as a couple of dome lights.

Engine

As aforementioned, the engine was a V-2-IS outputting 520 horsepower. An ST-700 electrical motor, outputting 15 hp (11 kW), was used for starting the main engine. In cold winters, two compressed air cylinders were used to start the engine. These were located by the driver’s feet. An NK-1 diesel fuel pump was used, with an RNA-1 regulator and carburetor. Air filtering was done by a multicyclone air filter. There was also a heater, used to heat the engine in cold winters, but also the fighting compartment. A total of three fuel tanks were in the vehicle, two in the fighting compartment and one in the engine bay, for a total of 540 liters (143 gallons). Two (90 liters each) external fuel tanks were on the engine deck. These were not connected to the fuel system and were meant to be dismounted when entering battle. The engine allowed the tank to reach a top speed of 37 to 40 km/h (23 to 25 mph). The fuel range was around 180 km (112 miles).

The rear of the Object 704, where differences in the engine plate compared to the IS-3 can be seen, such as the tow hook placement. Source: Warspot

Armor

Protection was one of the main focuses of the Object 704 project. All armored plates were welded with heavy sloping all around the casemate. The front plate was 120 mm thick, angled at 50°. The lower plate was 100 mm (or 120, sources are conflicting or might imply there might have been different thicknesses proposed) angled at -55°. The mantlet had two layers of rounded 100 mm cast armor. The side was 90 mm angled at 15° from the side. Even the rear casemate armor was 80 mm at 21°. The tank was immune from the front to the 88 mm PaK 43 L/71 gun of the Tiger II, which it never got to fight. Despite this thick armor, the vehicle still had an acceptable weight of 47.3 tonnes (52 US tons).

This was a very well protected vehicle. The thin (3 mm) sheets “hiding” the heavily sloped lower casemate armor can be seen. Source: Soviet Heavy SPGs, 1941-1945 page 38.

Test results

The SPG was finished by mid-June of 1945. It was sent to Moscow Factory No.37, from where it was taken to the state proving grounds at Kubinka. Originally, testers noted that the fighting compartment was cramped but later changed to praises for the commander’s and driver’s stations and their placement. The People’s Commissariat of Armaments asked to move the Object 704 to the Leningrad Artillery Research Experiment Range, to test the gun and artillery capabilities. Despite this, the vehicle was still sitting in Kubinka. A test program letter for the ML-20SM was also sent in July 1945. It was only in August when tests were approved but only began by September because Factory No.172 engineers did not arrive at the testing grounds. They finally arrived by the 24th of September, only to leave a few days later, leaving behind only an engineer which did not have authorization for any testing work! This outright comical timeline of bureaucracy delayed the testing of the Object 704 by six months. By the 13th of November, Kuznetsov and chief designer Nazarov finally arrived from plant No. 172. Testing was done from October until the 13th of November, through which 65 shots were fired for indirect fire and 244 shots for direct fire.

A letter summarising the results and opinions after tests was published.

  • Loading tray: No complaints other than the corners should be rounded, to make passing between the loader’s station and the breech operator easier.
  • Sights: The TSh-17 was comfortable and in a good position in relation to the gunner’s eye. The offset of the sight was negligible after 40 shots (it is safe to assume after more shots, the offset would be noticeable).

Fighting compartment notes

Several interesting remarks were made in relation to the superstructure and the design of the fighting compartment.
– The gun mantlet had no access port for the much-needed recoil brake. This meant that measuring the hydraulic fluid and releasing air was impossible.
– The hole below the gun mantlet (for depression of the gun) accumulated water.
– The sloping on the side walls made stowing ammunition difficult and complicated. Making the walls vertical was suggested.
– The headlight was mounted on a solid mount. Because of this, it shattered during firing trials. A movable spring stand was recommended.
– The commander’s position was praised, it was put facing forwards and the new hatch made battlefield observation easier and more effective.
– Both the gunner’s and driver’s stations were praised and deemed as an improvement over previous heavy SPGs.
– The loader’s position was actually considered spacious. The report stated that taking out the 12 rounds next to him could be done with ease. However, the 7 rounds on the opposite wall were noted to be hard to reach and load.
– In contrast, the breech operator’s station was noted to be cramped, especially when the gun was traversed to the left, bringing the breech to the right. Extracting the 16 propellant charges to the right side of the tank was not ideal due to the tight space. The other 4 charges beneath the gun were impossible to take out in combat conditions.

Other conclusions were:
– Wear on the barrel and muzzle velocity drop was typical, considering the caliber of the gun. After 309 rounds (244 of which with maximum charge), muzzle velocity dropped by 0.8%.
– The muzzle brake simplifies production and improves observation of the target after firing.
– Recoil brake performance is satisfactory, but the problems with access to it still stand.
– No unexpected wear or deformation occurred on the gun.
The gun had no malfunctions with the exception of failure to extract shell casings that had been used several times (as much as 10 shots).

Conclusion and fate

The Object 704 had clear advantages over the ISU-152. These included the lack of a muzzle brake, improved protection, and position of the driver and commander. The issues that were found, could, and most likely would have been addressed, if it would have entered production. The tank’s entry in service was hindered by bureaucracy and failure to get it to testing. The loss of time meant that the IS-4 was nearing serial production, making the IS-3 and a SPG based on it obsolete. With hindsight, the story of the IS-4 is, arguably, even worse. Another heavy self-propelled gun would not be built until the Object 268, based on the T-10, which had a similar fate to the Object 704.

The single prototype built survives today at Kubinka, where it was brought for testing in 1945. Source: World War II Wiki

You can also watch a walk around of the exterior and interior of the vehicle, made by “The Chieftain”, Nicholas Moran, here 

Illustration of the Object 704 by Pavel Alexe, based on work by David Bocquelet, funded through our Patreon campaign.

Sources:

Tankmuseum.ru
Heavy SPGs 1941-1945, Soliankin, Pavlov, Palov, Zheltov
Zveroboy, Mikhail Baryatinsky
Warspot.ru
Tankarchives.ca
Topwar.ru
Heavy SPG, A.V. Karpenko