Categories
Has Own Video WW2 German Tank Destroyers

Panzerjäger Tiger (P) 8.8 cm PaK 43/2 L/71 ‘Ferdinand/Elefant’ (Sd.Kfz.184)

German Reich (1943)
Assault Gun/Self-Propelled Anti-Tank Gun – 89 Built + 2 Prototypes

Following the cancelation of the Prof. Dr. Ferdinand Porsche’s VK45.01(P) heavy tank project, the Germans were left with 100 built chassis, including several completed tanks. As these represented a huge material, financial, and time investment, a solution for reusing these in some way had to be found. One solution was to modify them as self-propelled anti-tank vehicles, which the Germans ultimately did. The majority of Dr. Porsche’s VK45.01(P) heavy tank chassis would be rebuilt for this purpose. These would be armed with the powerful 88 mm L/71 gun and protected with 200 mm of frontal armor, making them formidable adversaries on the battlefield at that time. Despite the small numbers built, these would see extensive combat use during the war, where their effectiveness was plagued with many mechanical and logistical problems.

The Ferdinand tank destroyer. Source: Panzernet.net

Prof. Dr. Ferdinand Porsche’s heavy tanks projects

Prof. Dr. Ferdinand Porsche began his engineering career in the early twentieth century when he showed great interest in developing hybrid (combination of electric and petrol) engines. He even built a few new automobile designs which incorporated hybrid engines. During the First World War, while working for the Austrian Daimler factory, he proposed an artillery tractor that would use this hybrid engine. Eventually, nothing came from this idea. In 1930, he founded his own company located in Stuttgart. Porsche’s new company was mainly engaged in developing various designs based on the request of the clients.

Prof. Dr. Ferdinand Porsche. Source: WIki

Dr. Porsche would also get a chance to participate in military tank design, as he was appointed chairman of the German Panzer Commission in September 1939. This Commission was composed of leading owners of major industrial plants and engineers. Their primary function was to give suggestions and new ideas for further or already existing tank designs. While working on a number of military design projects, Dr. Porsche would establish a good relationship with Adolf Hitler. This support gave Dr. Porsche’s work a huge advantage over the competition, despite generally creating either too complicated or too expensive designs.

By the end of 1939, Dr. Porsche began working on designing components for a new heavy tank project for the German Army. His approach was somewhat unorthodox, as he was not limited by any requirements or technical specifications. Dr. Porsche’s initial work was mainly focused on the development of engines and transmissions. In cooperation with Oberingenieur Karl Rabe, Dr. Porsche made his first plans and calculations for a new vehicle called Porsche Typ 100 in early December 1939. While the name of this vehicle would change several times, today it is best known as the VK30.01(P), given by Krupp in March 1941. The following year, in 1940, in a meeting with Wa Prüf 6 (automotive design office under the Waffenamt) officials, Dr. Porsche received proper specifications for the new tank and received the necessary funds to actually build the first prototype. The Typ 100 was to be powered by two air-cooled engines placed at the rear. Each of these two engines was then connected to an electrical generator. These were used to provide power to the two additional engines placed in the hull. These in turn were used to power the front-drive sprockets. The Typ 100 used new longitudinally mounted torsion bars suspension. The six road wheels were to be placed in pairs on the three torsion bar units on each unit. Eventually, due to urgent needs of the development of the Tiger program, and due to a number of problems identified (huge fuel consumption, suspension problems, etc.) on the Typ 100, the project was canceled. Only one (or two, depending on the source) soft steel operational prototypes would be built and used for testing.

Porsche’s first heavy tank prototype, known as the Typ 100. Source: http://www.tankarchives.ca/2018/06/porsches-leopard.html

By the end of May 1941, Hitler issued the requirements for the new heavy tank project. These included an increase in armor thickness (up to 100 mm maximum) and the use of an 88 mm gun. Dr. Porsche began working on this new design during July 1941, and two months later, the first drawings and calculations were ready. Similar to the previous vehicle, this project was initially designated as Typ 101, but the name changed several times during the span of a year. Today, it is generally known as the VK45.01(P) or Tiger (P). This vehicle had several changes to its design in comparison to its predecessor. To have a better distribution of weight, the turret was moved more to the front and the final drive unit was repositioned to the rear. The engine was replaced with a more powerful one. Additionally, there were many overall design changes to its chassis and superstructure design.

The Typ 101, also known as VK45.01(P). Despite being produced in a small series, only one vehicle in its original configuration was used in combat. Source: Panzernet.net

Construction of such a vehicle was given to Nibelungenwerk. The first prototype was completed in April 1942 and presented to Hitler on his birthday, 20th April. Hitler was impressed with it, as Dr. Porsche received a production order for 90 vehicles (plus 10 with hydraulic drive) in May 1942. A second prototype, which was built shortly after, was transported to the Army weapon test site at Kummersdorf in June 1942. There, the VK45.01(P) proved to be prone to malfunctions, especially with the new engine.

Porsche gets rejected

Following a number of rigorous tests, the VK45.01(P) proved to be a complicated and mechanically unreliable vehicle. The competing Henschel prototype was also prone to malfunctions but was nevertheless deemed to have a better overall design. At the end of August 1942, the Reichsminister (Minister of Armaments and War Production), Albert Speer, had the opportunity to examine Dr. Porsche’s work at Nibelungenwerke. Reichsminister Speer even had the chance to actually drive the VK45.01(P) prototype. However, this visit was quite unsuccessful for Dr. Porsche. Witnessing the overall performance of the VK45.01(P), Reichsminister Speer insisted that this project be canceled, despite having received great favor from Hitler himself. Due to the many mechanical problems and overcomplicated design, even Hitler agreed that the VK45.01(P) was a failure and, on 22nd November (or October, depending on the source) 1942, he officially ended Dr. Porsche’s heavy tank project. While less than 10 (out of an order of 100) VK45.01(P) would be fully completed as tanks, only one heavily modified vehicle would be ever used in combat during 1944, on the Eastern Front, as a command vehicle.

As these chassis were already produced, they presented a huge financial and resource investment that could not be simply discarded, so something had to be done on that matter. Wa Prüf 6 made proposals to mount 150, 170, or even 210 mm heavy caliber guns on them, but nothing came from these proposals. Hitler proposed for them to be modified and used as schwere Sturmgeschütz (heavy assault guns). The frontal armor was to be increased to 200 mm (from the original 100 mm) and to be armed with the newly developed 8.8 cm PaK 43/2 anti-tank gun. In the following months, the precise role that this vehicle would fulfill was changed a few times. Initially, it was allocated to the Artillery Army branch. The project officially got the green light by the direct order of Reichsminister Speer on 22nd September 1942.

Name

This vehicle was initially designated as Typ 130 by Alkett (who was responsible for the development of prototypes). During its early development phase, in late 1942, a number of different designations were allocated to it. One of these was Sturmgeschütz mit der 8.8 cm lang or Tiger Sturmgeschütz. At that time, the simpler Ferdinand name (given in honor of Dr. Porsche) was becoming more frequently used by the designers and, later, even by the troops.

During February 1943, Wa Prüf 6 issued a list of potential names for this vehicle. These included Sturmgeschütz auf Fahrgestell Porsche Tiger mit der langer 8.8, Panzerjäger Tiger (P) 8.8 cm PaK 43/2 L/71 Sd.Kfz 184 or the similar 8.8 cm PaK 43/2 Sfl L/71 Panzerjäger Tiger (P) Sd. Kfz. 184. The simplest one was Panzejäger Tiger (P).

At the end of November 1943, Adolf Hitler gave a suggestion for a new name, Elefant (Elephant). The name was officially adopted during February 1944 and came to be implemented from May 1944 on. Despite the common misconception that this designation was applied to modified vehicles that were used from 1944 on, this was not the case (source T.L. Jentz and H.L. Doyle Panzer Tracts No.9 Jagdpanzer). For the Germans, the Ferdinand and Elefant were one and the same vehicle.

Production

The Ferdinand was initially designated to fulfill the role of an assault gun. The major manufacturer of such vehicles (primarily the Sturmgeschütz III, StuG III) was Alkett for most of the war. While Alkett possessed the necessary tools and manpower to complete the construction of the Ferdinand vehicles, it was decided by Wa Prüf 6 (during February 1943) that these were to be completed at Nibelungenwerke. On the other hand, Alkett (with the support of Dr. Porsche) would be involved in the construction of the first two prototype vehicles (chassis numbers 150010 and 150011 – depending on the source, the numbers are written with a space after the third number or without it). In general, Alkett was unable to proceed with the Ferdinand project. It was heavily involved with StuG III production and could not free up its production capacity to be involved in another project. There was also a general lack of proper rail transport units that were able to successfully carry the heavy weight of the Ferdinand’s larger components.

The Nibelungenwerke factory was located in the city of Sankt Valentin (near Steyr, in Austria) and was founded shortly after the German annexation of Austria. Initially, it was involved in production of Panzer IVs, which were then transported to Krupp-Gruson. Nibelungenwerke would be substantially enlarged so that it was capable of producing Panzer IV Ausf.F tanks. Its officials would also make an agreement with Dr. Porsche to develop his heavy tank projects. While it possessed production capabilities to conduct the construction process, Alkett provided Nibelungenwerke with a group of 120 skilled metalworkers to speed up the whole production process.

Alkett’s first blueprints of the Typ 130. Source: T. Anderson Ferdinand and Elefant tank Destroyer

As the construction of the Ferdinand required extensive modifications to the VK45.01(P) chassis, other subcontractors would be needed. For example, Eisenwerke Oberdonau from Linz was responsible for making the necessary modifications to the hull. Siemens-Schuckert of Berlin was to provide the electrical motors and the generator. Krupp from Essen was responsible for producing the large casemates.

Due to some delays, the first 15 hulls were completed in January 1943. The remaining hulls would be ready by mid-April 1943 when they were transported to Nibelungenwerke for final assembly. Krupp was also involved in providing additional necessary parts. On 16th February 1943, the construction of the first vehicle (chassis number 150010) began. According to the original production plans, the last vehicle was to be completed by mid-May 1943.

The precise production run was slightly different depending on the source. For example, according to T. Melleman (Ferdinand Elefant Vol.I), production began in early 1943, when 15 vehicles were completed. These were followed by 26 vehicles in February, 37 in March, and, by May, all 90 were completed. Initially, four vehicles were used for training purposes.

According to T. Anderson (Ferdinand and Elefant tank destroyer), production was planned as 15 vehicles in February, 35 in March, and the final 40 in April. T.L. Jentz and H.L. Doyle (Panzer Tracts No.23, Panzer production 1933-1945) state that 30 were built in April and the remaining 60 in May.

A row of Ferdinands under construction. Source: Panzernet.net
The last completed Ferdinand, chassis number 150100, containing various inscriptions added by the workers. Source: www.worldwarphotos.info
The Ferdinand components were built by a number of different subcontractors. When completed, these were sent to Nibelungenwerke for final assembly. Source: J. Ledwoch Ferdinand/Elefant,

Initial testing

As the production of the first vehicles was going on, two Alkett prototype vehicles, chassis numbers 150010 and 150011, were transported to the weapon test site at Kummersdorf and Magdeburg by order of Wa Prüf 6 for testing and evaluation. These two can be easily identified by the rear positioned flexible fenders and protective covers for the forward-mounted headlights (both would be removed on the production vehicles). One of these vehicles would be presented to Hitler on 19th March 1943 during an exhibition of new vehicle prototypes at the Rugenwalde proving ground.

One of the two prototypes was presented to Hitler at the Rugenwalde proving ground on the 19th March 1943. Source; T. Anderson Ferdinand and Elefant tank Destroyer
One of the first constructed Ferdinands (Chassis number 150011) at Kummersdorf during testing in mid-April 1943. Source: Vol.1 book

In a report dated 23rd February 1943, over a dozen or so deficiencies were listed for the second prototype (chassis number 150011). Some of these included that the fuel line from the left engine was positioned too close to the exhaust pipe, the electric-powered fuel pumps were unreliable, the fact that in order to drain the cooling liquid, nearly 50 screws had to be removed, checking the oil level in the air compressor was difficult, the short life of the cooling system drive belts, the hand brakes were too weak, the inadequate size of the towing hooks, and spring breakages on the running gears, among several others. In normal conditions, the Ferdinands would have probably spent months in the workshops, where designers and engineers would try to resolve these issues. But, in 1943, the German Army was preparing to commence a new offensive operation on the Eastern Front. The majority of the Ferdinands were already on their way to this front. The only real option was to provide the Ferdinand-equipped units with Formveräderungen (Modification kit equipment) to be implemented in the field.

The two prototype vehicles would be thoroughly tested during 1943, mainly focusing on their mechanical reliability. In the case of the prototype with chassis number 150011, by late August 1943, it was reported to have driven some 911 km. With a weight of 64.37 tonnes (without crew and ammunition), the fuel consumption was noted to be huge. On good roads, in order to cross 100 km, the Ferdinand needed 867.9 liters. Cross country, this reached up to 1,620 liters at the same range. Many defects with the engine design, huge fuel and oil consumption, problems with the suspension design, poor accessibility for maintenance etcetera were noted.

Specifications

The Ferdinand was, in essence, divided into two large sections. The hull contained the two front crew members, four engines, and generators. The enclosed casemate positioned at the rear held the 8.8 cm main gun, the ammunition, and the rest of the crew. Each of these components was built using welded armor plates with some elements being connected using bolts.

A cross-section showing Ferdinand’s interior. Source: butterfingeredmodelbuilder.wordpress.com

Lower Hull

The Ferdinand’s lower hull could be divided into four sections: the front driving compartment, the main engines positioned in the center, the lower rear electric engines, and the fighting compartment placed on top of it. The hull was constructed using welding, with the added frontal armor held in place by bolts.

Close-up view of a Ferdinand hull under construction. The original VK45.01(P) rear engine compartment’s curved armor is evident here. Source: T. Melleman Ferdinand Elefant Vol.II,

Superstructure

On top of the Ferdinand lower hull was a fully enclosed superstructure which provided protection for the two crew members and the engines. It had a rather simple square design, with flat sides that angled inwards toward the front plate, while the rear part had a reverse angle.

The front part of the superstructure was where the driver and the radio operator were positioned. These two crewmembers entered their position through two hatches placed on top of the superstructure. The original VK45.01(P) round side doors intended for these two crew members were simply welded shut. The front driver visor and the machine gun ball mount were removed and replaced with a simple 100 mm thick armored plate. To provide the driver with a means to see where he was driving, a protected three-sided periscope was placed on top of his hatch door. In addition, there were two round-shaped visor ports (additionally protected with armored glass) placed on both sides of the inward-angling side armor. Next to the radio operator’s hatch on the vehicle’s right side was placed the antenna mount.

Close-up view of the driver’s hatch and the three periscopes. Source: J. Ledwoch Ferdinand/Elefant,

These two crew members were separated from the remaining rear-positioned crew members. The only way of communication with the commander was by using an intercom. It consisted of earphones and a throat microphone. In real combat conditions, this system proved to be prone to malfunctions. In an attempt to solve this issue, the Germans tried using light signals for communication between the driver and commander.

Behind these two crew members was placed the engine compartment, which was separated (on both sides) by a fire-resistant wall. It consisted of the two gasoline engines, electric generators, coolant radiators, and cooling fans, oil and fuel tanks. In order to put all these components into the engine compartment, they had to be placed close to each other, which caused many overheating problems and even cases of fire were not uncommon later during Ferdinand’s service life.

The top of this compartment was protected by an armored plate that was held in place by simple bolts. This way, it could be easily removed to facilitate necessary repairs. In the middle of this plate, a square armored grid cover was placed for the air intakes. On both sides of it, two rectangular grid hatches for the protection of the radiator’s air fan exhausts were placed. Close to the large casemate, there were three narrow hatches that covered most of the width of the engine compartment. They mainly served as engine access doors but, in the field, the crews would often leave them open for better ventilation. The engine exhaust pipes ran internally on both sides of the hull. They exited through a small opening which was located close to the fifth road wheel on both sides. While this arrangement provided protection for the exhaust pipes, the extensive heat rapidly deteriorated the grease lubricants on the fifth wheels. These affected their life expectancy and they had to be replaced often.

Behind the rear positioned engine firewall, two Siemens generators were placed. Atop them, the remaining crew members were stationed, protected by the large and well-protected casemate. While the original VK45.01(P) hull was reused for the Ferdinand vehicle, the rear part was changed. The two angled side plates were replaced with a flat one extended to the rear, which was more suited to carry the huge casemate.

A brand new Ferdinand. Note the small round-shaped visor port on the angled left side. Source: www.armedconflicts.com
Front view of the Ferdinand vehicle. The front armored plates were held in place by over 30 bolts. Source: Panzernet.net

The toolbox was placed on the superstructure’s right front side. This was not an ideal location, as it could be easily damaged during combat operations. So, it would be moved to the rear of the vehicles. The crews would also add additional spare boxes for various additional equipment.

Ferdinands had a spare toolbox placed on the superstructure’s right front side. This particular box is opened and the tools stored inside can be seen. Source: Pinterest

Casemate

The huge casemate positioned to the rear of the vehicle housed the 8.8 cm gun and four crew members. Its overall construction was simple, as it consisted of four armored plates plus the top one which were welded together. Viewed from the front, the casemate had a trapezoidal shape. While these plates were thick, they were also slightly sloped to provide additional protection. It was not actually welded to the superstructure but was instead held in place by bolts. Outside, close to the engine compartment, there was a small rectangular plate (with five bolts) that served as a reinforced connector between the superstructure and the casemate.

The front plate had a round-shaped opening in the middle for the gun ball mount. To avoid getting rainwater into the engine, some crews welded two diagonal improvised drains in front of the superstructure.

This vehicle is under repair and in the process of removing its large casemate. The small reinforced connector plate is actually removed for this purpose. Source: T. Anderson Ferdinand and Elefant tank Destroyer
This vehicle had the improvised rain drains located just below the third bolt on the gun mantlet. The Source: Unknown

To the rear part of each side armor plate, a cone-shaped pistol port was placed. These were actually plugs that were connected to chains. When in use, the armored cover would simply be pushed out by one of the crew members. Once open, these would just hang on to the chains and could be closed back by dragging the chain back in. To the rear, in the middle of the casemate, a large round-shaped one-piece hatch was located. In the center of this door, a much smaller round-shaped hatch was located. Its main role was to act as another pistol port and to be used during the ammunition resupply. Two additional pistol ports were placed on both sides of this door.

The rear positioned round door with the smaller center-positioned hatch being open and used for ammunition resupply. Source: Pinterest

The top was not flat and was actually slightly angled toward the engine compartment. In front of it, the arc-shaped armored cover was used for the gunner’s periscope. To the right of it, the commander’s square-shaped two-piece hatch was located. Somewhat surprisingly for German standards, the commander was not provided with a command cupola and his view of the surroundings was quite limited. Further back, on the left side, the loader’s round-shaped two-part hatch was located. In the back corners, two round-shaped ports were used by the two loaders to see the surrounding with periscopes. In the middle, a ventilation port with protective sides was installed.

Due to its extreme weight, every bridge crossing was not to be taken lightly. If the bridge construction was not strong, there was a good chance to disintegrate and take the Ferdinand with it, like in this case. However, this provides us with a good view of the commander’s (to the right) hatch, gunner’s (to the left) curved periscope shield, and the ventilation port in the middle. The loader’s hatch and the two periscope ports are not visible here. Source: Pinterest
This particular Ferdinand is missing its rear hatch. The two pistol port cone-shaped covers were out hanging on the chains. Source: Warspor.ru
A dismantled casemate awaiting repair and later assembly. Source: https://mikesresearch.com/2020/05/24/ferdinands-elefants-on-the-eastern-front/

Suspension and Running Gear

The Ferdinand’s suspension consisted of six large road wheels, a front idler, and a rear drive sprocket on each side. The six road wheels were divided into pairs and were placed on bell cranks, which in turn were mounted on longitudinal torsion bar units. Each of these pairs of road wheels was actually suspended individually. Initially, Dr. Porsche’s design utilized rubber-rimmed wheels. As these were quickly worn out due to the extreme friction between the track and the wheels, Dr. Porsche designed a much simpler solution, using steel wheels with inbuilt spring units to help with shock absorption. The Germans, by this time, were having shortages of rare materials, including rubber, so this was a welcome innovation that would see use in later years on the Panther and the Tiger tanks. The road wheels had a diameter of 794 mm.

The Ferdinand, on paper, had a relatively simple suspension that consisted of six large road wheels. To save rubber and to extend their service life, they were made of steel with no rubber rim. Source: Pinterest

The shapes of the front idler and rear drive sprocket were visually almost identical. The main difference between these two was in their internal construction. They were identical to simplify the production of parts. But the main reason was to prevent the track from falling off the suspension due to the vehicle’s length and lack of any return rollers. Both the idler and the drive sprocket had a diameter of 920 mm and consisted of two toothed rings that had 19 teeth. The tracks used were 600 mm wide and were connected using single-pins. The ground clearance of this vehicle was 50 cm.

Close-up view of the longitudinal torsion bar units. Source: tank-photographs.s3

Dr. Porsche’s suspension design had positive and negative sides. The positive side was that the whole suspension system was completely external. This allowed him to lower the vehicle’s hull and provide more working space inside it. On the other hand, while the overall design was (at least in theory) simple, it was prone to malfunctions and breakdowns. Due to the vehicle’s extreme weight, replacing broken parts was difficult to achieve without proper equipment.

Engine and Transmission

As Dr. Porsche’s original VK45.01(P) dual-electrical engine system proved to be too complicated and unreliable, it was decided to replace these with a more orthodox power unit. Two Maybach HL 120 TRM gasoline engines giving out 265 hp@ 2600 rpm were chosen instead. Each of these two engines was provided with a 74-octane gasoline fuel tank. The engine was water-cooled, with some 37 l placed in two coolant tanks. One cooling tank was placed on top of the generators, while the second was in front of the engine. Based on the experience the Germans gained during the previous two Russian winters, they paid great attention to providing Ferdinand’s oil radiator with a system that would enable it to start during cold weather. This was a simple system that redirected hot water from the cooling radiator to a small vessel placed next to the oil radiator, which in turn heated the oil. The engine’s gearbox had three forward and three reverse speeds. The engine compartment was designed rather hastily and the maintenance was not always easy to accomplish.

Each fuel tank could carry some 475 liters (950 l in total). The Ferdinand was, due to its weight, a heavy fuel consuming beast. It needed some 1,100 l for crossing 100 km of road. With the fuel load carried inside, the operational range was 150 km on good roads, while off-road, often the case on the Eastern Front, the operational range was reduced to only 95 km. The maximum speed for a vehicle weighing 65 tonnes was a solid 30 km/h, but it could be only achieved on good roads and for a short period of time. The maximum cross-country speed was only 10 km/h or even less.

The engines used to power the two Siemens Typ K58-8 generators. These two generators would in turn produce the necessary power for the two Siemens Typ 1495a direct current electric (230 kW each) motors. These two electric motors were positioned under the casemate. Each of them was responsible for providing power to one side of the vehicle, being connected to the rear positioned drive sprockets through electromechanical drives.

The rear positioned Siemens Typ 1495a direct current electric motors gave the necessary power to turn the two drive sprockets. Source: T. Melleman Ferdinand Elefant Vol.II
Top view of the engine compartment cover plate. Source: T. Anderson Ferdinand and Elefant tank Destroyer
The position and the design of the engine compartment meant that any repair of this part of the vehicle was overcomplicated. Without proper tools and crane equipment, it was almost impossible. Source: Thoma

Armor Protection

The Ferdinand had formidable armor protection for its day. The upper front armor of the hull was 200 mm thick (at a 30-32° angle, depending on the source). This was not a single-piece armor plate, but instead two 100 mm thick plates (or 90 and 110 mm, depending on the source) joined together. These were held in place by 32 conical head bolts. Alkett initially proposed adding 80 mm of 55° angled armor to the front, but this was not implemented

The lower part of the hull was a single piece measuring 80 mm placed at an angle of 45° (42°). The top part of the lower hull was 60 mm at 78° (82°) angle. The flat hull side armor was 60 mm and the rear ranged from 40 (60 mm depending on the source) to 80 mm (at a 60° to 90° angle). The bottom armor was 20 mm thick. It is not clear in the sources if the previously positioned machine gun ball mount and the driver visor port openings were left empty or filled in with armor plates.

The superstructure frontal armor was 200 mm thick placed at a 9° (12°) angle. It too consisted of two separated armor plates held in place by a combination of welding and bolts. Some sources state both plates were 100 mm thick, while others claim they were 90 and 110 mm thick. The flat sides were 80 mm, rear 80 mm placed at a 40° angle, and 30 mm on the top.

This captured vehicle was used by the Russian as target practice. It has a hole where the machine gun ball mount was previously located. Source: Warspot.ru

The rear positioned casemate was protected with a single piece of 200 mm frontal armor plate placed at a 20° angle. The sides were 80 mm thick and placed at a 30° angle. The rear armor was the same armor thickness placed at a 20° angle. The top was much lighter, at 30 mm placed at an 86° angle.

The same vehicle as above. It had its casemate armor used as a firing target for a number of different weapons. While the Ferdinand’s front armor was formidable, the side and rear were still thick, but certainly not invincible. Source: Warspot.ru

Crew

The Ferdinand had a crew of six, which were separated into two groups. The first group consisted of the driver and the radio operator, who were placed in the front hull. For steering the Ferdinand, a standard lever arrangement was used. However, their operation was slightly different in comparison to other vehicles. Namely, by moving the steering levers, instead of controlling the two drive sprockets, on the Ferdinand, they actually controlled the two electric motors, each responsible for powering one side. In front of the driver, there were two pedals: one for acceleration and the second for activating the drum brake. There was also an auxiliary lever parking brake, which also served as a clutch.

The huge Ferdinand needed six crew members to be operated properly. Source: Panzernet.net

The radio operator’s job was to operate the Fu 5 radio set, which consisted of the transmitter and a receiver. The 2-meter aerial antenna was placed next to his hatch. An additional 1.8 m Sternantenne D antenna mount was placed on the rear right corner of the casemate. This antenna was used for the command vehicles which were equipped with Fu 8 radio, which had a stronger transmitter and receiver. The spare batteries for the radio were held under the radio operator’s seat.

The remainder of the crew, which included the commander, gunner, and two loaders were positioned in the rear casemate. The commander had only a limited view of the surroundings by using the Scherenfernrohr (scissor periscope), and only with the hatch open. The loaders had two Turmbeobachtungsfernrohr (observation periscopes).

Quite surprisingly, the Ferdinand did not have a commander’s cupola, which was quite a common sight on other German vehicles. The only way a commander could see potential targets was through a scissor periscope with a limited arc and with an open hatch. Source: K. Münch (2005) Combat History of German Heavy Anti-tank unit 653 In World War II,

Armament

The main armament of the Ferdinand was the 8.8 cm PaK 43/2 L/71, probably the best anti-tank gun of the Second World War. It was, in essence, a modified version of the 8.8 cm Flak 41 anti-aircraft gun. During the war, the Germans developed and used two towed 8.8 cm anti-tank gun versions. The first one was the PaK 43, which was mounted on a four-wheel carriage, and the second was the PaK 43/41, placed on a mount with components from a few different artillery pieces (wheels from 15 cm s.FH.18 and the split trail legs from the 10.5 cm le.FH.18). The PaK 43/41 used a horizontal sliding block mechanism, while the Pak 43 had a vertical one. The PaK 43/41 was an effective anti-tank gun, being able to take out all of the Allied tanks, but was also too heavy.

The 88 mm PaK 43 and the 43/41 (in the picture) were some of the most effective anti-tank guns of the war. Their heavy weight, on the other hand, meant that they were difficult to transport or move by their crews. For this reason, they were jokingly known by their crews as the ‘barn doors’ (Scheunentor). Source: Wiki

For use on the Ferdinand (and, later, the Jagdpanther), the Germans introduced a slightly modified version, named 8.8 cm PaK 43/2, which was more suitable for installation into enclosed armored vehicles. It had a semi-automatic and vertical sliding block. It had an electrical trigger, with the firing trigger being placed on the elevation handwheel.

The gun itself was mounted on a cradle that stood on two runnions connected to two curved post arms. This installation was specially designed in order to reduce the stress acting on the elevation gears. The hydropneumatic buffer and the recuperator cylinders were placed on top of the gun.

The 8.8 cm gun had a traverse of 30° (15° on each side) and an elevation of -5° to +14° (or -8° to +18°, depending on the source). The traverse and elevation hand wheels were positioned on the left side of the gun and operated by the gunner.

After firing the gun, the spent case was caught by a canvas sleeve basket. Due to the 8.8 cm case’s large size, nearly a meter, not many could fit into this basket, so the loader had to frequently empty it. It also had a secondary role of measuring the recoil travel of the gun that had to be in the range of 550-580 mm. When on the move, the gun was held in place by a forward-positioned travel lock. Inside the casemate, there was another smaller ‘H’ shaped travel lock, located in the casemate ceiling.

A close-up look of an 8.8 cm mount, waiting to be assembled into a Ferdinand. The vertical sliding block and a part of the canvas sleeve basket are also visible. Source: T. Anderson Ferdinand and Elefant tank Destroyer
The forward-positioned travel lock. Source: T. Anderson Ferdinand and Elefant tank Destroyer

Despite being a huge vehicle, the total ammunition load was quite limited, with only 40 rounds. These were held in storage bins located inside the casemate sides. The Ferdinand crews would often use any available spare space to add additional rounds, reaching a total load of 50. Authors such as T. Melleman (Ferdinand Elefant Vol.I) mention that some crews managed to squeeze in up to 90 rounds!

When firing at longer ranges, the Ferdinand crews used the Sfl Zielfernrohr 1 a type telescopic sight. When engaging targets with direct fire, the Rundblickfernrohr 36 periscope sight was used. While the Ferdinand could be used as mobile artillery thanks to its armament’s range, sufficient elevation, and firepower, it was rarely used in this manner. The main problem would be the small ammunition load of high explosive rounds and the fact its main task was hunting tanks and other armored vehicles.

While the 8.8 cm gun could fire either armor-piercing or high-explosive rounds, the Ferdinands were initially to be armed with the armor-piercing only. Prior to their first engagement at Kursk, each Ferdinand was supplied with 20 two-part (propellant charge and explosive round) semi-fixed high-explosive (HE) rounds. These proved to be of poor quality and prone to jamming during extraction after firing. Another issue with the two-part rounds was their time fuse, which worked well for the original anti-aircraft use. On the Ferdinand, however, the significant forces exerted on the time fuse due to the high acceleration in the barrel could lead to premature explosions. These would later be replaced with better-designed rounds. The range of the HE rounds was around 5.4 km.

Regarding the armor-piercing (AP) rounds, there was a better choice, with a few different types available. These included the standard Pzgr.39-1 and the improved Pzgr.39/43 AP, which had a range of 4 km. The Pzgr. Patr 40 was a tungsten-cored armor-piercing shell with the same range of 4 km. Lastly, the Gr.Patr 39 H1 and Gr.Patr 39/43 H1 hollow charge rounds were available, which had a range of around 3 km.

When using the standard AP round, the gun could penetrate 182 mm of armor sloped at 30° at a range of 500 m. At 1,000 m this dropped to 167 mm, and at 2,000 m to 139 mm. The tungsten round, at the same ranges and angles, could penetrate 226 mm, 162 mm and 136 mm. As the Germans had problems with the supply of tungsten, this round was rarely used. The hollow charge round could penetrate 90 mm of armor inclined at 30° at any range. These hollow charge rounds were not well known for their precision and, when the target was hit, there was a good chance that the round would misfire.

The Ferdinands were equipped with a two-part, rectangular-shaped shield, which was bolted on the front part of the gun mantlet. Its purpose was to protect the main gun from any small-caliber rounds or shrapnel. Not all vehicles received these from the start, some were added later on (just prior to their combat use), while some never received them. During the later part of the Kursk Offensive, a number of crews improvised some by completely redesigning the gun shields, which could now be much easier replaced. After 1944, these became standard equipment and replaced the earlier design.

This vehicle is lacking the gun mantlet protective shield. Source: Worldwarphotos.com
This Ferdinand has the initial production gun mantlet protective shield, which proved too difficult to be taken off and would be replaced. Source: Warspot.ru
Later modified 1944 Ferdinand, with the shield initially used as an improvisation but that later saw widespread use. Source: Panzernet.ne

For protection against infantry attacks, the Ferdinand was equipped with an MG 34 machine gun with 600 rounds of ammunition that was stored inside the vehicle. In addition, there were two 9 mm MP 38/40 submachine guns.

Organization

The Oberkommando des Heeres OKH (German High Command) initially planned to form three Schwere Sturmgeschütz Abteilung – StuGAbt (Heavy Assault Gun Battalion). These included the 190th StuGAbt, which was to be reformed and renamed into the 654th Assault Gun Battalion, the 197th, renamed into the 653rd Assault Gun Battalion, and the newly formed 600th Assault Gun Battalion. Each was to be equipped with 30 vehicles divided into three 9 vehicle strong batteries. The remaining 3 vehicles were to be allocated to a HQ battery. Once ready on the front, each battery was to be separated from the main unit and used more as mobile close artillery support.

In March 1943, the organization and employment concepts were completely reworked. This was done by the General Inspector of the Armored Troops, General Heinz Guderian. He first reallocated the Ferdinands from the Sturmartillerie to the Panzerwaffe. This change also affected the unit organization and tactical use. The Ferdinands would be allocated to two battalions, the 653rd and 654th schwere (Heeres) Panzerjäger Abteilung – sPzJagAbt (Heavy Tank Destroyer Battalion). These were, in turn, part of the 656th schwere Panzerjäger Regiment (Heavy Tank Destroyer Regiment). This unit, besides the two Ferdinand-equipped units, also had a third, Sturmpanzer Abteilung 216 (216th Tank Assault Battalion), equipped with 45 Sturmpanzer IV heavy assault vehicles (based on the Panzer IV chassis). Each battalion was divided into three companies, each equipped with 14 vehicles (further divided into three platoons each, with 4 vehicles and two command vehicles), plus a Battalion HQ with three vehicles, for a total 45 per battalion. Additional vehicles based on the Panzer II and III, and Sd.Kfz 250/5 and 251/8 half-tracks were given to these units, either as command vehicles, close support, medical support, or for artillery observation. The change in tactical doctrine referred to the concentration of all available vehicles while attacking designated targets instead of dividing them into smaller units.

The Regiment HQ was officially formed on 8th June 1943, mainly from reserve cadres of the 35th Panzer Regiment. Oberstleutnant Ernst Baron von Jungenfeld was chosen as the commander of this Regiment. The command of the 653rd Battalion was given to Major Steinwachs, that of the 654th Battalion to Hauptmann Karl-Heinz Noak, and that of the 216th Battalion to Major Bruno Kahl. The 653rd Battalion, during its reorganization, was stationed at Neusiedl-am-See in Austria and the 654th in Rouen in France. By late May, the 653rd Battalion was visited by Heinz Guderian, who observed the unit during training exercises. He was quite impressed with how the vehicles managed to get over 40 km to their base without any mechanical breakdowns.

Camouflage

When they left the German factories, the Ferdinands were painted in the standard Dunkelgelb (dark yellow). They also had three Balken Kreuzen painted on the hull sides and to the rear. Once on the front, the Ferdinands crews would use their ‘artistic soul’ to paint their own vehicles to try to blend as well as possible with the surroundings (being a huge vehicle, this was not an easy task).

Each Battalion used different types of camouflages. The 653rd employed large blotches of green paint applied with either brushes or sprayed. These were either round in shape or with more straight lines. A few vehicles had three-color schemes: a combination of green with brown outlines. The 654th crews did a number of different designs mostly using dark yellow and green combinations.

Vehicles from 653rd were painted with large blotches of green paint applied with either brushes or sprayed. Also, note the Balken Kreuzen painted on the hull side and to the rear. Source: T. Melleman Ferdinand Elefant Vol.I
A 654th sPzJagAbt Ferdinand with a different camouflage. Source: T. Melleman Ferdinand Elefant Vol.I

Markings and emblems

Once these vehicles were given to the 656th Regiment, they also received their proper unit markings. The marking system employed on the Ferdinands consisted of the standard three-digit numbers, but it was quite complicated. The 653rd and 654th Battalions were designated as the I and II Battalion of the 656th Regiment. These were then divided into the 1st, 2nd, and 3rd Companies of the I Battalion and the 5th, 6th, and 7th of the II Battalion. As mentioned earlier, each of these companies had 14 vehicles plus a Battalion HQ unit with 3 vehicles. Each company was divided into 3 Platoons, each with 4 vehicles, plus a Company HQ with 2 vehicles. It was common for the Germans to name the Company HQ as the 1st Platoon.

Of the three-digit markings, the first number represented the Company number. The number 4 was not used. The middle number indicated the Platoon. The Company HQ, which was listed as the 1st Platoon, would be marked as ‘0’. This also affected the markings of the remaining Platoons, as their number is actually smaller by one. For example, the 3rd Platoon would actually have the 2 number designation instead of 3. The last digit was used to designate individual vehicles in the Platoon. The odd numbers were used to mark the section commanders in each Platoon. As the Company HQ only had two vehicles, they were just marked as 1 or 2.

As an example, the vehicle with the number ‘721’ belonged to the 654th Battalion’s 7th Company, 3rd Platoon, 1st section command vehicle.

The smaller Battalion HQ, which had only 3 vehicles, was marked differently. It also consisted of a three-digit number, but the difference is that the first number represented the Battalion and was marked with a Roman numeral. The 653rd was marked as ‘I’ and the 654th as ‘II’. Being command vehicles, the second digit was 0, followed by the vehicle number from 1 to 3. For example, the IO3 was the 653rd Battalion HQ’s 3rd vehicle.

The two Battalions, while using the same three-digit system, painted these numbers differently. The ones on vehicles of the 653rd were white with black outlines, while the 654th used completely white numbers. These were painted on the vehicles’ sides and on the rear.

While it was somewhat common among the German armored units to have some unit emblems, this was not the case for the 656th Regiment. The 653rd Battalion simply adopted its original German Army eagle (from back when it was known as the 197th Assault Gun Battalion), but with the wings folded down and standing on two crossed guns.

The 653rd Battalion unit emblem. Source: K. Münch Combat History of German Heavy Anti-tank unit 653 In World War II

During the Kursk Offensive, the 653rd Battalion used an identification symbol that consisted of two smaller squares and a larger rectangle. The larger rectangle represented the Company, being marked with different colors. White was used for the 1st, yellow for the 2nd, and red for the 3rd Company. The exception was the 1st Company’s 3rd platoon, which had a red stripe, and the 4th Platoon, which had a red cross. The small square indicated the platoon in question, except for the 1st Platoon, which had none. The 2nd was indicated with the same rectangle color, the 3rd with no color but with white outline, and the 4th Platoon with Company color with white outline.

A completely blown up casemate due to an internal explosion. Note the rear positioned large 653rd Battalion identification symbol Source: Panzernet.net
Illustration of the 653rd Battalion’s identification symbols. Source: T. Melleman Ferdinand Elefant Vol.II

The 654th Battalion used less elaborate markings. These consisted of black rectangles with a white letter ‘N’, the initials of the unit commander, Karl Heinz Noak. The Company number would be added after the N, like N1, N2, and N3. In the case of the HQ, the letters ‘St’ (Stab – Command) would be added instead of the numbers. These were painted either on the glacis or left fender and on the rear left corner of the casemate. When this unit was later disbanded, all its surviving vehicles were given to the 653rd Battalion. These then received the 653rd’s markings and, in time, the camouflage scheme. When the first snow began to fall, all surviving Ferdinands received whitewash paint covering the whole vehicle, including the markings.

During the winter of 1943, all surviving Ferdinands received whitewash paint which covered all markings on them. Source: https://mikesresearch.com/2020/05/24/ferdinands-elefants-on-the-eastern-front/

The 656th Regiment officially received its own emblem, containing a shield with the silhouette of an exploding tank. Under the tank, the word ’Pampas’ was added. The precise meaning was sadly lost.

The 656th Regiment’s emblems, with the Pampas word written at the bottom. Different colors represented different Companies of the unit. https://mikesresearch.com/2020/05/24/ferdinands-elefants-on-the-eastern-front/

New marking and camouflage

The vehicles used in Italy in 1944 were painted in the same dark yellow and green combination. After 13th June, they received a new ‘U’ Gothic letter, usually at the rear end of the casemate. The precise meaning of this letter is not documented. Tactical markings were not used on the majority of the Elefants sent to Italy. A few vehicles would receive the three-digit numbers painted in white.

The vehicles that were not sent to Italy received a new emblem, the Sword of the Nibelungs which emerges from the Danube’s waves. It was usually painted in front and to the rear of the casemate, but some also had these painted on the hull sides.

The Sword of the Nibelungs emblem is visible in the right corner of the casemate. Source: Pinterest
An illustration of the Sword of the Nibelungs emblem with the company markings. Source: http://panzerserra.blogspot.com/2014/05/bergepanther-mit-aufgesetztem-pzkpfw-iv.html

Service

Baptism of fire at Kursk

The 656th Regiment was transported to the Eastern Front during June 1943 for the upcoming German offensive against the Soviet Kursk Salient, Operation Citadel. The main base of operation for this Regiment was the Smiyevka train station, some 25 km south of Orel. Once the vehicles were unloaded, they were driven to their designated area of assembly. In the case of the 653rd Battalion, the 1st Company was at Kuliki, the 2nd at Gostinovo and the 3rd Company at Davidovo. By the end of June, the entirety of the 656th Regiment was at its designated initial positions. The few days before the offensive were used for training and for the vehicle commanders to get familiar with the surrounding terrain. Of the three Battalions, only the 653rd was fully equipped with 45 vehicles. The 654th had 44 and the 216th had 42 vehicles (but many sources disagree on the exact numbers).

The first Ferdinands arrive in the East. Source: www.worldwarphotos.info

As the Ferdinands were intended to spearhead the German advance, they were to be reinforced with a remote-controlled tank company (equipped with Borgward B.IV Sd.Kfz.301) for cleaning minefields. These small vehicles were equipped with detachable explosive charges designed to detonate mines in a wide area. They could be either remotely controlled or driven by a human driver.

The small Borgward B.IV. Source: pinterest

The 656th Regiment was part of the XXXXI Panzer Korps under the command of General Harpe. Its order of battle during the initial stages of the Kursk Offensive was as follows: The 653rd Battalion was to support the attack of the 86th and 292nd Infantry Divisions, while the 654th Battalion supported the 78th Infantry Division. The 216th Brigade was to follow up in the second wave, together with the 177th and 244th StuG Brigades. Their objective was a heavily fortified Soviet position around the Malo-Archangelsk and Olchovatka area, with its key position around Hill 257.7 (later known as Panzer or Tank Hill).

Prior to the start of the offensive, the Ferdinands were camouflaged to avoid Soviet aerial reconnaissance. Source: www.worldwarphotos.info

The attack on the first day by the 653rd Battalion pierced the first Soviet defenses and reached its target, destroying some 26 T-34 tanks and dozens of anti-tank guns in the process. Many of its Ferdinands were temporarily put out of action due to extensive Soviet minefields, which spanned extensive areas. To increase the lethality of their mines, the Soviets coupled them to artillery shells or even aircraft bombs. While they usually just blew up parts of the suspension, some were so strong that they would damage the hull, which could not be repaired on the front. The anti-mine auxiliary unit did its best to clear the minefields, but lost many of its vehicles in the process. The Soviet artillery also made mine clearing operations difficult. Places that were clear of mines and marked as such were usually shelled by the Soviet artillery. The advancing Ferdinand crews would lose sight of the clear paths and accidentally run into minefields that were not cleared. In total, on the first day, the 653rd Battalion lost 33 vehicles to mines. While most required only minimal repair works, their recovery proved to be difficult. In order to move one Ferdinand, at least 5 heavy Sd.Kfz.9 half tracks were needed. Being unprotected, they often fell victim to Soviet artillery fire trying to prevent recovery of these vehicles. The 653rd Battalion would receive two new Bergepanthers (based on the Panther tank chassis), but even these proved to be inadequate. During the night, Soviet demolition teams would blow up any abandoned Ferdinands they could get to.

A destroyed Soviet anti-tank gun, claimed by the Ferdinands. Source: K. Münch Combat History of German Heavy Anti-tank unit 653 In World War II

The 654th Battalion, while advancing toward its objectives, Hill 238.1 and 253.5, also came across many minefields. Thanks to the remote controlled vehicles, clear roads were established with the loss of 10 of the Borgwards. Still, this was far from enough, leading to the loss of a large number of the 654th Battalion’s vehicles being damaged.

In a memorandum dated from 17th July 1943, Heinz Guderian described the 653rd Battalion’s combat operation. “….The very heavy artillery barrage (on the first day, 100 heavy and 172 light guns, 386 rocket launchers, and countless grenade launchers) smashed the attack by our infantry. The Ferdinands and Strumpanzers were not able to push their attack in the depths of the enemy positions, as the infantry had been halted. Thus, the tanks had to stop in the middle of the battlefield, attracting concentrated artillery fire. The enemy artillery always found time to regroup and to reinforce. The missing secondary armament on the tanks negatively affected the tanks in combat. Subsequently, losses were high”.

The experience of the Ferdinand crews is partly shown in the report to Generalmajor Hartmann written by Unteroffizier Böhm and dated from the 19th July 1943.

“…. On the first day of combat, we successfully defeated bunkers, infantry, artillery and anti-tank positions. Our guns were under artillery barrages for three hours and still maintained their ability to fire! Several [enemy] tanks were destroyed during the first night, and others fled. Artillery and anti-tank crews fled before our guns after we fired upon them repeatedly. In addition to many batteries, anti-tank guns and bunkers, our battalion destroyed 120 tanks during the first round of fighting. We suffered 60 casualties during the first few days, mostly from mines. ….. We also had bad luck. It was at the rail embankment when a Panzer III on the other side received a direct hit and flew through the air, landing on the front part of the Ferdinand. Wrecking the tube, aiming device and engine grating. …. We were more successful during the second operation defending east of Orel. Only two total losses. One gun under Leutnant Tariete destroyed 22 tanks in one engagement. The total number of tanks destroyed is high and the Ferdinand contributed substantially to the defence, just as with the penetration. One gun commander destroyed seven of nine American built-tanks that approached him. …… The Ferdinand has proved itself. They were decisive here, and we cannot go against the mass of enemy tanks today without a weapon of this type.”

On 8th July, a group of 4 Ferdinands and 20 Tigers were advancing toward the Soviet line. On the other side, some twelve SU-152’s under the command of Major Sankovsky were waiting in ambush. Once the German vehicles came to a distance of 500 m, the Soviet vehicles opened fire. In the following engagement, the range was even more reduced, just 300 m, where the Tigers suffered under the SU-152’s heavy large caliber rounds. The Ferdinands proved more resilient but after numerous hits they too would fall victims to the 152 mm guns at close range. At the end of this engagement, the Germans lost four (or three, depending on the source) Ferdinands and 8 Tigers, inflicting no losses on the Soviets.

By 11th July, some 19 Ferdinands were reported as complete losses. Of these, four vehicles were burned out due to engine accidents. The remaining were mostly destroyed by enemy artillery fire, which hit the less protected engine compartment top. In addition, some 40 vehicles were temporarily out of action and needed repairs. Half of those were brought back to action by 11th July.

On 14th July, any further salvage operations were abandoned and, instead, the surviving vehicles of the 653rd Battalion were redirected to support the German attempts to relieve the 36th Panzergrenadier Division, which was surrounded by nearly 400 tanks of the Soviet 3rd Tank Army. The Ferdinands, under the command of Lt. Heinrich Teriete, managed to drive them back, despite the small German armored numbers. Thanks to well-selected firing positions and the poor enemy reconnaissance, the Ferdinands took advantage of the 8.8 cm gun’s long-range firepower. During this engagement, Lt. Heinrich Teriete himself claimed to have destroyed 22 Soviet tanks, for which he would be awarded a Knight Cross later on. During the same day, some 60 Ferdinands (34 from the 653rd and 26 from the 654th Battalion) took defensive positions around the Shelyaburg-Tsarevka area.

During the period between 14th and 17th July, the German units at Kursk were faced with rapid Soviet counter-attacks. The 653rd and 654th Battalions, despite losses and mechanical breakdowns, participated in German defensive operations south of Orel. Their mission was to defend the heavily contested Orel-Kursk railway line. The already poor mechanical reliability of most Ferdinands was further worsened by constant skirmishes with the Soviets. The Regiment commander, Jungenfeld, reported his unit’s poor shape to the 2nd Army (elements of the 9th Army, including the two Ferdinand Battalions, were previously sent to assist this Army) in a report dated 24th July 1943.

“.. The Regiment has been permanently in combat since 5 July… The Ferdinand, as well as the Sturmpanzer, suffered numerous technical problems. Initially, it was planned to withdraw the tanks for 2-3 days after a 4-5 day commitment to undergo maintenance and repair work. This was not possible… All tanks now need an overhaul requiring 14 to 20 days.. I herewith report to the 2nd Army that, within a short time, the regiment will no longer be combat ready…”

At the end of July, due to constant Soviet pressure, it was decided by the 2nd Army that Orel had to be abandoned. At the start of August, the 653rd Battalion had 12 Ferdinands ready for action, some 17 in repair and 16 were reported as complete losses. The 654th Battalion, on the same day, had 13 operational, 6 in repair and 26 complete losses.

There was an interesting and somewhat unusual (to say at least) situation where a Ferdinand was lost, being hit by a ‘flying’ Panzer III. The strange situation occurred when a remote-controlled mine clearing vehicle was hit by Soviet artillery fire, detonating its 350 kg explosive charge. The following explosion threw into the sky many parts (including the chassis) of a nearby Panzer III command vehicle. A part of the chassis hit the engine compartment of a Ferdinand, setting it on fire.

The destroyed Panzer III that hit and heavily damaged the nearby Ferdinand vehicle. Source: K. Münch Combat History of German Heavy Anti-tank unit 653 In World War II
While the Soviets managed to either destroy or damage many Ferdinands, a few were captured in relatively good order. This particular vehicle (chassis number 150061) belonged to the 3rd Company of the 653rd Battalion. Source: Panzernet.net
Another captured example, belonging to the 1st Company of the 654th Battalion. While the burnt-down vehicle in the background was used as a firing practice target, the vehicle at the forefront has been preserved to this day. Source: Panzernet.net
A Ferdinand from the 653rd Battalion near Karachev. Source: Panzernet.net
A damaged Ferdinand from the 654th Battalion. While the frontal armor was almost immune to enemy fire, the sides were still vulnerable. Source: Panzernet.net
The ferocity of the fighting is evident on this vehicle, which received dozens of hits, but all failed to penetrate its armor. Source:T. Anderson Ferdinand and Elefant tank Destroyer
The T-34, despite its angled armor, was vulnerable to Ferdinand’s 8.8 cm gun. Source: T. Anderson Ferdinand and Elefant tank Destroyer

After Kursk

By mid-August 1943, the two Ferdinand Battalions were being pulled out of Orel to the rear for recuperation and much-needed repairs. While Ferdinand achieved great success in destroying enemy armor, many Ferdinands, which were irreplaceable, were lost. On 23rd August, all surviving vehicles from the 654th were given to the 653rd Battalion. The 654th Battalion was sent to Orleans in France for recuperation and refitting with the new Jagdpanther and Jagdpanzer IV.

Following this, the 653rd Battalion was pulled back from the front line and stationed at the Dnepropetrovsk industrial center. The damage on some vehicles was such that even this center lacked proper tooling and equipment for the job. Of 54 surviving vehicles, four could not be repaired. Of the remaining 50 vehicles, only 10 to 15 (depending on the source) were combat ready by mid-September. These, together with over 10 Sturmpanzer IVs, were used to form a Sinsatzgruppe (task force) and placed under command of Hauptman Baumunk. This group received orders to divide into two smaller units, with one was tasked with heading toward Sinelnikovo and the second to Pavlograd by rail. While the Soviets held part of the railway line, after a brief engagement, they retreated.

The Ferdinands would mostly be stationed in this area when, in late September, the unit was evacuated towards Zaporozhye. In early August, during a defensive operation at Krivoy Rog, the Ferdinands claimed to have destroyed 21 enemy tanks and 23 anti-tank guns.

On 10th November 1943, the Ferdinands were repositioned from Zaporozhye to positions south of Nikopol. The German positions at Nikopol were well defended and supported by the 24th Panzer Division, to which the Ferdinand Company was attached to. On 20th November, the Soviets managed to make an opening in the German defensive line, rushing in with large numbers of tanks in an attempt to exploit their breakthrough. This formation was successfully intercepted by the 24th Panzer Division and the Ferdinands.

A Ferdinand during the battle around Nikopol in November 1943. Source: Pinteres

At the end of November, during the battles around Kochasovka and Miropol, the Ferdinands inflicted great damage on the Soviets, claiming 54 tanks. Lt. Franz Kretschmer’s vehicle alone destroyed some 21 tanks. On the following day, the 653rd Battalion’s situation became untenable, having only 4 fully operational vehicles available. Besides these, of the 42 vehicles, some 8 needed some minor repairs, and the remaining needed major overhauls. The Battalion received orders to be transported to Sankt-Pölten on 10th December 1943. The withdrawal started six day later, but due to Soviet activity, this withdrawal lasted up to 10th January 1944.

In a German report dated from the 7th August 1943, the Ferdinands were credited with the destruction of 502 enemy tanks, of which 320 were achieved by the 653rd Battalion alone. An additional 100 artillery and 200 anti-tank guns destroyed were also reported by the German Army. Three months later, another report stated that they had destroyed 582 tanks, 3 self-propelled guns, 3 armored cars, 477 (or 377 depending on the source) anti-tank guns, 133 artillery guns, 103 anti-tank rifles, and 3 aircraft! It is not clear if these numbers correspond to reality or are just inflated propaganda numbers.

German post-combat analysis

Following Operation Citadel, the German after-action reports mended the overall performance of the Ferdinand vehicles. The most praised asset of the Ferdinand were its excellent anti-tank capabilities, demonstrated by the sheer number of destroyed tanks claimed. It had good accuracy, a long range and possessed great armor piercing capabilities. The more heavily protected Soviet KV-1 tanks could be effectively destroyed at ranges of 2 km. On average, 2 to 3 rounds were enough to completely destroy enemy tanks.

The ammunition, on the other hand, proved to be problematic, most noticeably in the case of the high-explosive rounds. The problem was mainly regarding the poor quality of the ammunition casing, which often led to the clogging of the gun chamber. The loaders were often forced to carry additional improvised equipment to try to eject the stuck spent rounds.

Another great issue was the lack of a machine gun mount that could be used for self-defence against enemy infantry attacks. While the crew had their own personal weapons and an MG 34 machine gun stored inside, these could not always be put to use against enemy infantry. There were four pistol ports, two on the sides and two to the rear, but none to the front. Some Ferdinand crews improvised by using their MG 34 machine gun to fire through the main gun barrel. The gun elevation and traverse were used to direct the firing arc of this machine gun.

Many crews used spent cases to make makeshift mounts to provide a more stable machine gun firing platform, in order to avoid damaging the rifling of the gun. Installing a machine gun mount on top of the armored casemate was also attempted but proved to be unpopular as the operator had to be exposed to enemy return fire and fragments. Installing an infantry platform to the rear of the casemate was tested. However, the supporting infantry riding on this were easy targets for enemy gunners, so this idea was shortly abandoned. To somewhat resolve this issue, the Ferdinand units were reinforced with 12 Panzer III tanks that were to act as a screen against enemy infantry and soft targets.

The armor protection was deemed sufficient. During the battle for Kursk, there were no reports of the front armor being penetrated. There were cases of the side armor being pierced by 76.2 cm rounds at closer ranges. While the front armor protection of the casemate was more or less invincible, at that time, it had one major issue. Enemy rounds or artillery fragments could ricochet into the insufficiently protected engine top cover. This would cause minor to significant damage to the engine, cooling system or fuel lines, to name a few. A number of vehicles were either immobilized or lost this way. For this reason, it was later requested to add 20 to 30 mm additional armor protection atop the engine compartment.

The cooling system was not up to the task, as there were cases of the engine compartment catching fire due to the engine overheating. At least one vehicle was completely lost during a recovery operation when it caught fire due to the engine overheating itself.

The Ferdinand was noted by its crews to lack sufficient visibility and had many blind spots and poor visibility in general. Radio equipment was often jammed due to Ferdinand’s electrical equipment. The temperature inside the casemate was high and there were cases of the signal flare ammunition blowing up. Despite its weight, the Ferdinand could relatively easily cross a 2.6 m wide trench. It also possessed a good climbing ability. However, their cross-country speed was noted to be only around 10 km/h.

Interestingly, the new gasoline-electric power train performed relatively well. Its power output was sometimes problematic, and some vehicles caught fire due to electric short-circuits. The suspension was deemed ineffective and prone to malfunctions. The narrow tracks, together with the weight, caused many vehicles to be bogged down. The lack of a proper recovery vehicle was also noted, with many vehicles having to be blown up because they could not be recovered.

Despite the long list of negative issues with Ferdinand, they showed that a well-protected and armed anti-tank vehicle had merits. They offered many advantages over the poorly armored and improvised anti-tank vehicles already in service (for example, the Marder series).

Back to Germany

Following the Eastern campaign, all surviving Ferdinands were brought back to Nibelungenwerke for a major overhaul. These included the 653rd Battalion’s 42 vehicles and a smaller number of vehicles that were recovered earlier during the Kursk operation and were sent back to Germany. In addition, the two Alkett prototypes were also sent to Nibelungenwerke.

An important note here, these vehicles were still named Ferdinands at this time. The Elefant designation was only implemented from February (or May) 1944 on. As mentioned earlier, the Elefant designation was never used by the Germans to separate the improved form from the initially produced vehicles. It was more a fulfillment of Hitler’s request to change the names of many vehicles to more aggressive animal names. As the Elefant designation was becoming official with the Germans during 1944, this article will use this name from this point onward.

Assembled vehicles awaiting repairs at Nibelungenwerke. Source; www.worldwarphotos.com

As these were being gathered at Nibelungenwerke, the workers and engineers set on repairing any major damage, but they were also working hard to address a number of noted shortcomings of the Elefant. This was mainly with regard to visibility, mobility, and anti-infantry weaponry. As this was not an easy task to achieve, the Vienna Arsenal was also included in the rebuild program. It is there that some 6 completely burned-out Elefants were brought back to life.

Modifications

In order to improve mobility, the Elefants were provided with wider tracks. For better visibility, in what was surprisingly not issued on the first production vehicles, the improved Elefant received a commander’s cupola very similar to that of the StuG III. This cupola had seven periscopes which provided the commander with a good all-around view. The commander’s hatch also had a small opening for the use of a periscope if needed, without exposing himself to enemy fire. The two small vision ports located on the superstructure’s front sides were welded shut. The driver’s periscope cover was also slightly improved by adding a plate to protect from the sun. A few vehicles were equipped with two-part round-shaped rear casemate doors instead of the single-piece one regularly used.

This vehicle was turned over by an aircraft bomb explosion. Thanks to this, we have a good view of the improved top. Source: T. Melleman Ferdinand Elefant Vol.II
Close-up view of the new commander’s cupola. Source; T. Anderson Ferdinand and Elefant tank Destroye
Four vehicles received the new two-part hatches. The angled part on top of the doors was used for water drainage. Source: https://mikesresearch.com/2020/05/24/ferdinands-elefants-on-the-eastern-front/
Drawing of the two-part hatch. Source: https://mikesresearch.com/2020/05/24/ferdinands-elefants-on-the-eastern-front/

Visually, the most obvious change was the introduction of a machine gun ball mount (Kugelblende 100 or 80, depending on the source) placed on the right side of the superstructure. It was protected by an additional 100 mm of armored cover, with a small opening for the machine gun. This mount had an elevation of -10° to + 15° and a traverse of 5° in both directions. It was to be operated by the radio operator. The machine gun operator was provided with a 1.8x KFZ 2 optical sight.

The most obvious improvement was the introduction of the ball-mounted machine gun. Source: Panzernet

Why the machine gun mount was never installed in the original vehicles is not clear in the sources. There are a few different possibilities. While the original VK45.01(P) had a ball-mounted machine gun, this was not carried over to the later Ferdinand vehicles. One source gives information that this was done simply as the Krupp engineers lacked the men and skill to make an opening in the 200 mm thick plate. This explanation is somewhat problematic, because there were actually two 100 mm thick plates and that the German engineers already had some experience making the holes necessary for the installation of the ball mount. The second possible reason includes Alkett’s original proposal to mount additional angled armor plates in front of the vehicle. Adding a ball mount machine gun position would be much more difficult to achieve in this case. The main reason was probably that Nibelungenwerke’s engineers were forced to speed up the production and did not have the time nor tools to implement it. Also, the Ferdinand was initially intended to be used as an assault gun (like the StuG III), which themselves lacked a machine gun. The protection against enemy infantry was to be provided by the supporting infantry. Whatever the case may be, from early 1944 onward, the Elefant had better means of fighting off infantry attacks from the front.

The new machine gun ball mount was added starting from early 1944 on . Source: Ledwoch Ferdinand/Elefant

The lower hull armor of the driver’s compartment was increased by an additional 30 mm thick armor plate. The engine compartment top cover was slightly improved to provide better engine protection. The worn out engines were also replaced with brand new Maybach HL 120 models. Additional protection included Zimmerit anti-magnetic paste that was applied to roughly half the height of the vehicle.

The gun shield, previously more of a field modification, was now being used as standard. It was much easier to replace when damaged or during the change of the gun barrel. The ammunition load was increased to 55 rounds. The troublesome crew communication system was improved. With all these modifications, the overall weight of the vehicle rose to 70 tonnes.

The changes also included the appointment of a new 656th Regiment unit commander. The previous commander, Baron von Jungenfeld, was promoted to Colonel. In his place, Oberst Richard Schmitgen was appointed. Another change concluded the 656th Regiment’s fate. While on paper it still existed, in reality, its units were detached and sent to Italy in 1944, after which the 656th Regiment was never actually used at full regimental strength.

The overall repair process lasted from January to April (or March depending on the sources) 1944, with the first vehicles being combat ready by February 1944. During this time, some 47 vehicles and the 2 prototypes would be improved to the new standard.

Elefants in Italy

Following the Allied invasion of Italy in 1943 and, later, the American amphibious landing at Anzio in January 1944, the German High Command was forced to rapidly send more and more troops and equipment there. For this reason, elements of the 656th Regiment were also to be sent there. This included the 216th Assault Tank Battalion and at least one Elefant Company. Not many Elefants could be spared, as a large number of them were still in Nibelungenwerke’s workshop waiting to be repaired and modified. On 15th February 1944, the 653rd Battalion’s 1st Company, with 11 vehicles and one recovery vehicle under the command of Helmut Ulbrich, was ready to be transported to Italy. Initially, it was planned to send 14 vehicles, but the last three could not be repaired in time due to a lack of spare parts.

Elefant in Italy, 1944. Source: www.worldwarphotos.info

All vehicles reached Rome by 24th February 1944. Once there, the 1st Company was attached to the 508th Heavy Tank Battalion equipped with Tiger tanks under the command of Major Hudel. At the end of February, under bad weather, the Elefants and Tigers were ordered to attack American positions. The Elefants were once again used in a role for which they were not designed for. This attack was to be conducted through marshes which were unsuitable for heavy vehicles. During this attack, while crossing a bridge, one Elefant was immobilized. After a number of failed recovery attempts, it was abandoned. The next day, another vehicle struck a German mine, and once again, due to the inability to tow it to safety, it was blown up by its own commander, Gustav Koss. Due to the loss of two vehicles in a short amount of time, the remaining vehicles were pulled back. They would be stationed in a more defensive role near the cities of Cisterna and Velletri for the next few months. Due to problems with the arrival of spare parts, their use after the initial action around Anzio was limited.

The second Elefant to be lost hit a mine and, as it was unable to be recovered, it was abandoned. Source: Pinterest

American sources give us some information on their engagements with the Elefants around Cisterna. In the report of the 601st Tank Destroyer Battalion, while on the road to Cisterna, two M10 tank destroyers commanded by Sergeant Harry J. Ritchie and Sergeant John D. Christian came under fire from a group of Tigers and two Elefants at ranges just over 230 meters. The gunner of one M10, Corporal James F. Goldsmith later wrote.

“ Sgt Ritchie ordered me to pull into open view around the corner of the building, and from this exposed position, directed three hits onto the most exposed tank, it being about 550 yards (some 500 meters) up the road at that time, and knocked it out. We received heavy armor-piercing and high-explosive fire from the other tanks, shells barely missing our destroyer by a few feet and fragments hitting us. We were exposed for about five minutes. Sgt Ritchie ducked his head and shoulders below the turret and pulled back behind the house. When enemy fire ceased, Sgt. Ritchie had me pull out again, and from the same exposed position, directed two rounds of AP shells that hit and bounced off the front armor of the Ferdinand 250 yards (230 meters) east of us. We again received intensive fire from the enemy tanks and shells were landing so close that fragments were coming through the open turret, one slightly wounding our gunner in the head when it hit our tank and damaging the counter-balance and .50 caliber machine gun mounted on the edge of the turret. We were again exposed to enemy fire for about five minutes. He ducked into the tank and we pulled behind the house again. We continued to fight throughout the day with our damaged gun. ”

While Sergeant Ritchie’s vehicle was under fire, the second M10, commanded by Sergeant Christian, shot several rounds at the German vehicles, scoring two hits on a Tiger and two more on the Elefants. He reported that only two crew members from the hit vehicles managed to escape. Whatever damage he did to them, or whether his 76 mm gun managed to pierce the Elefant’s armor is not mentioned.

By 20th May 1944, the Elefants were mostly kept in reserve for maintenance and repairs. A few days later, the Allies made a breakthrough, so the Elefants were once more put into action. In the initial engagements, they destroyed 4 to 6 (depending on the source) enemy Shermans, with the loss of two vehicles. One had an engine malfunction and was burned down, the second was blown up by its crew when it became immobilized. Following this, the unit had to retreat back to Rome by June 1944. The enemy armor was not the only threat that the Elefants had to face. The extensive Allied air superiority caused the further loss of two more burned-down vehicles. One was hit by a P-47 bomb on 5th June, while on the Via Aurelia road. The second vehicle was lost five days later, near Orvieto.

The stream of bad luck did not end there. While crossing an old bridge, the bridge construction simply collapsed under the Elefant’s extreme weight, taking the vehicle with it. The vehicle commander was killed during this accident As there was no way to recover it, the crew had no choice but to destroy it.

At the start of July, the 1st Company of the 653rd had only 3 (or 4, depending on the source) vehicles with only 2 operational and one undergoing repairs. In addition, the unit still possessed the recovery Bergetiger (P). Though orders for the unit to pull back to Germany were given on 26th June, frontline developments prevented this from happening. The few Ferdinands would see more combat action up to early August when they were finally pulled out to the Vienna Arsenal. By that time, only three (or two, depending on the source) combat vehicles and the recovery vehicle survived.

Most Elefants that were sent to Italy were blown up by their own crews to avoid capture. Source: Vol.2 Ferdinand near Rome

Back to the East

Despite some misconceptions that the Elefant’s story ended in Italy, this was not the case. Those vehicles that were not involved in Italy were actually being prepared to once again face the Soviets. The 653rd Battalion was now under command by Rudolf Grillenberger, while the 2nd Company was commanded by Werner Salamon and the 3rd Company by Bernhard Konnak.

An Elefant and some of its crew in Poland, at Rabka, in early 1944. Source; T. Melleman Ferdinand Elefant Vol.II

While the German Army planned to send the Elefants to the East in March 1944, this was not possible. By late February, only 8 vehicles were fully operational, while the remaining were still under repair. Among other reasons, shortages of spare materials, workforce, and a lack of electricity further delayed the completion of the remaining vehicles. Delays were also caused by a lack of sufficient supply of soft-skinned vehicles.

On 8th April 1944, the Battalion reached Brzezany and was attached to the 9th SS Panzer Division Hohenstaufen by mid-April. The 653rd Battalion had 30 operational Elefants, 2 Bergetiger (P), 1 Bergepanther and 2 Panzer III ammunition carriers. Additionally, one Elefant was still in Austria and was not available due to needing repairs. At this time, the problem with the acquisition of soft-skinned vehicles was not solved. In essence, the necessary ammunition, fuel, or supply operations could not be carried out.

The SS Panzer Division and the supporting units, including the Elefants, were intended to be used as a relief force for the trapped German units near Tarnopol. The bad weather caused huge logistical problems and greatly slowed down the 653rd Battalion’s attack, which led to the cancellation of an attack on the city of Siemakovce. On 24th April, another attack on Siemakovce was attempted. An advance unit consisting of German infantry and 9 Elefants managed to capture the city after two days of fighting. The next day, they crossed the Strype River and made a defensive line. After an engagement with the Soviets, the 2nd Company had two damaged vehicles, which were recovered, but the mechanics were not able to immediately repair them. Ultimately, the Germans failed their objective and were forced to retreat due to extensive Soviet attacks. The 2nd Company lost two more vehicles. Like many times before, they had to be blown up, being unable to be recovered. By late April, the 2nd Company was attacking Soviet positions at Siemienkowicz, but due to bad terrain, most vehicles were left temporarily disabled due to their engines being overheated.

By May 1944, the mechanical situation of all surviving Elefants was dire. Due to a lack of sufficient supply vehicles, the recovery vehicles had to be used in this role. Despite many tank destroyers being temporarily out of action due to a lack of much-needed repairs, the Elefants showed that they were still effective tank killers. The Elefant also gained a great reputation among the Russian but also the German ranks, but not all were impressed. In his memoirs, a Nashorn tank destroyer driver (from the 88th Heavy Anti-Tank Battalion), Gefreiter Hoffmann, wrote.

“I never saw this Porsche-thing. Everybody on the front was talking of it, calling it a wonder-weapon, being better than the Tiger … My boss was very proud of our Hornisse with its long gun, we were pretty successful. He scoffed at this giant vehicle: “Too heavy to move, too clumsy to steer, what a dreck”, he said”

On 11th May, the Battalion was repositioned to Kozova and Zborev, which were only 15 km from their positions. The sources are not clear about the precise number of vehicles at this point. While T. Melleman (Ferdinand Elefant Vol.II) states that few vehicles had to be blown up, author T. Anderson (Ferdinand and Elefant tank Destroyer), on the other hand, stated that by June, no complete loss was reported.

After this operation, the Battalion was pulled back to a resting position near Brzhezhany. During this time, this unit received at least 4 Elefants which had the new rear casemate two-piece hatches. It was also supplemented with some bizarre field modifications based on the Bergepanther and the Soviet T-34 tanks.

In mid-July 1944, the Soviets launched a huge offensive against the German North Ukraine Army. The Germans responded by sending the 653rd Battalion to this area. The Elefants were attached to the Eingreiftruppe Nordukraine, in essence, a ready deployment force. This mixed unit managed to achieve success against the enemy armor. However, the Soviets managed to break through other points of the German defense line. The deployment force and the Elefants were forced to retreat to Landeshut. On 20th July, the Soviets were trying to stop this retreat but were constantly kept at bay, with the loss of a number of Elefants in the process. These were mostly blown up by their crews, as their engines would often break down due to overheating. The 653rd Battalion would see extensive action up to 27th July, when it managed to complete its retreat thanks to its tenacious defense and the shift of the Soviet direction of attack. Heavy fighting during July cost the 653rd Battalion some 19 to 22 vehicles plus 2 recovery Bergetiger (P), the command Tiger (P), and some 4 ammunition supply tanks. While only a few were actually lost in combat, the majority had to be blown up by their crews due to a lack of fuel and breakdowns. The loss of crewmen was surprisingly low, with 19 wounded and only 5 dead.

An ISU-152 taken out by precise Elefant fire. The round hole atop the driver visor is actually the place where the 8.8 cm round penetrated the ISU’s armor. Source: T. Anderson Ferdinand and Elefant tank Destroyer

At the start of August 1944, there were still more combat operations which cost the battalion a few more vehicles. On 4th August, the 653rd Battalion received orders to reposition to Krakow. Due to a lack of vehicles, the 3rd Company was disbanded and sent back to Germany to be armed with the new Jagdtigers. In addition, at this time, two of the surviving vehicles from Italy were used to reinforce the depleted 653rd Battalion.

One of the several Elefants that survived the retreat of July-August 1944. Source: K. Münch Combat History of German Heavy Anti-tank unit 653 In World War II, Stackpole Books.

In mid-December 1944, the 653rd Battalion was renamed to Heeres schwere Panzerjäger Kompanie 614 (614th Independent Tank Destroyer Company). It was then attached to the 4th Panzer Army near the Bodzentyn area on 22nd December. The 614th Company saw heavy action in combat south of Kielce, where it lost some 10 vehicles from 14th to 15th January 1945. Interestingly, even by this time, the Elefant’s front armor was almost invincible, even capable of resisting several hits from the IS-2’s 122 mm gun. By the end of January 1945, there were only four Elefants and one Bergepanther left. The unit was moved to Stahnsdorf for much-needed repairs in late February 1945. The mechanical condition of these vehicles was poor and they badly needed repairs. Luckily for them, there were still some resources available to put them back in action.

Once repaired, the unit was repositioned to Wünsdorf in April 1945. On 21st April, it was attached to Kampfgruppe Möws, which, with the 4 Elefants, was to support Kampfgruppe Ritter. During preparation for transport on rails at the Mittendorf station, one vehicle had to be left behind, as it broke down and could not be repaired. It would remain there up to 1947, before finally being towed away. The remaining three vehicles would be separated, with one left defending a position at Löpten, and the remaining two sent to defend Berlin. These took action near Karl-August Platz, where they would be captured by the Soviet Forces.

This picture is often described as the last Elefant in Berlin. Source: http://panzerserra.blogspot.com/2014/05/bergepanther-mit-aufgesetztem-pzkpfw-iv.html

Bergepanzer Ferdinand and other improvised support vehicles

Prior to their engagement on the frontline, while used for crew training, the Ferdinands did not have many mechanical breakdowns that needed towing vehicles. Even if they did break down, there were Sd.Kfz.9 vehicles available for towing to the repair workshops. The reality of frontline service, however, showed the need for a dedicated recovery vehicle. In the field, a great number of Ferdinands were immobilized. As the Germans lacked the required numbers of Sd.Kfz.9 and tank-based recovery vehicles, the damaged Ferdinands were often blown up by their crews to avoid being captured.

To somewhat resolve this issue, three available Tiger (P) chassis were to be rebuilt as Bergepanzers (recovery tank). The modification included adding a new much smaller fully enclosed casemate to the rear. In front of it, a ball-mounted 7.92 mm MG-34 machine gun was placed, with two additional pistol ports on the sides. On top of this casemate, a round hatch door was installed, while to the rear, a two-piece hatch was placed, taken from a Panzer III turret. There were also three smaller slits on the front and sides of the crew compartment. The armor thickness of these vehicles was much lighter than the Ferdinand, with 100 mm to the front. The front casemate armor was 50 mm and 30 m on the side. A boom crane was placed on top of the vehicle’s superstructure. Another change was the use of longer tracks which, with the lower weight, provided them with better overall drive.

These three were completed by August 1943 and issued to the 653rd Battalion, with one vehicle per company. They solved the lack of towing vehicles and many Ferdinands were recovered thanks to their help.

Bergepanzer Ferdinand Source: Panzernet.net

Of special note, during 1944, the 653rd Battalion’s mechanics and engineers managed to build a number of improvised vehicles based on German and also captured vehicles. One such vehicle was created using a Panzer IV turret which was welded on a Bergepanther. Another example involved installing a 2 cm Flakvierling 38 on a second Bergepanther.

Soviet vehicles were also modified, with two receiving a new open-top turret armed with 2 cm Flakvierling 38 anti-aircraft guns, while two more were modified as ammunition carriers. One rare captured KV-85 had its gun removed and was used as a recovery vehicle. Finally, the 653rd Battalion was supplied with one Tiger (P) that was used by its commander as his personal command vehicle.

A Soviet T-34 armed with the 2 cm Flakvierling 38 placed in a new turret. Source: http://beutepanzer.ru/
A few Bergepanthers were allocated to the Elefant units. Source: http://panzerserra.blogspot.com/2014/05/bergepanther-mit-aufgesetztem-pzkpfw-iv.html
At the front is the only Porsche Tiger ever used in combat. Behind it is the strange Panzer IV/Panther hybrid vehicle. Source:https://forum.warthunder.com/index.php?/topic/321507-panzer-v-ausfuhrung-d1-mit-panzer-iv-h-turm-39panzer-viv39/
The 653rd Battalion managed to capture one rare KV-85 vehicle. This vehicle had its turret removed and was used as a recovery vehicle by this unit. Source: K. Münch Combat History of German Heavy Anti-tank unit 653 In World War II, Stackpole Books.

Surviving vehicles

Despite the small number built, today, there are two surviving vehicles left. One restored Elefant is located at the Fort Lee U.S. Army Ordnance Museum. This particular vehicle belonged to the 653rd Battalion and was captured in Italy by the Allies. The vehicle spent some time on loan at the Bovington Tank Museum in Dorset, UK. The vehicle was displayed as part of the museum’s “Tiger Collection” display from April 2017 until January 2019, when it was returned to the United States. This display brought all the members of the Tiger family together in one place for the first time. The second vehicle is located at the Russian Patriot Park and was captured during the Battle of Kursk.

The surviving Elefant located at Fort Lee. Source www.Tank-Hunter.com
The Ferdinand at Kubinka, before being moved to Patriot Park. Source: Wiki

Conclusion

Many sources that do not go into much analysis of the Ferdinand’s state that they were a waste of resources and had a poor overall design. It is important to remember that the Germans had already built 100 Porsche Tiger chassis. A lot of resources and time had already been invested in a vehicle that was not going to be put into production. They simply had no other choice than to see proper use of these already built chassis. For the later assembly of Ferdinands, additional resources were needed. The Ferdinand was rather hastily designed, which is best seen in the lack of s commander cupola and machine gun in the hull. The engine compartment was inadequate and too cramped, which later caused problems with the engine overheating. Some of these would later be corrected. Ferdinands also required frequent repairs and maintenance, but nearly all WWII vehicles required such things to be effective in combat. The armament and the armor were some of the best for their day. The Ferdinand is also often seen as too heavy. At its 65 and later 70 tonnes, it was. While it could reach a top speed of 30 km/h, its actual cross-country speed was only 10 km/h. Thanks to their long length, they had a good climbing ability.

In combat, the Ferdinands gained an enviable reputation among the German and Soviet units for their deadly gun and strong armor. The Soviets, when engaging German tank destroyers, would often describe them as Ferdinands, even though they were usually other vehicles in the German inventory. The German propaganda machine also helped by portraying the Ferdinands as wonder weapons. Despite this, the Ferdinand’s success as a deadly tank destroyer is hard to deny. During Kursk alone, over 500 Soviet armored vehicles were claimed to have been destroyed by them. Even taking into account a 50% overclaim ratio (which is excessive), the numbers remaining are still very impressive.

In the end, the Ferdinand was a deadly tank hunter that was plagued by its rushed development and lack of numbers. While not a waste of resources, they were no wonder weapons and possessed quite a number of flaws.

The VK45.01(P) or Tiger(P)
Porsche’s VK45.01 prototype in 1942. It was given as a favorite before problems with the complex powerplant emerged.
Ferdinand
Early production Ferdinand, Panzerabteilung 653, summer 1943.
Ferdinand on the Eastern Front
653rd Panzer-Abteilung, Eastern front, winter 1943-44.
Ferdinand at Kursk
Ferdinand of the 654th Panzer-Abteilung, Kursk, summer 1943.
Another Ferdinand at Kursk
Ferdinand of the 654th PanzerJäger Abteilung, Kursk, Eastern front, 1943.
Elefant in Italy
Sd.Kfz.184 “Elefant” of the 1st company, 653rd Schwere Heeres Panzerjäger Abteilung, Anzio-Nettuno, March 1944.
An Elephant fighting in Ukraine in 1944
Tiger (P) Elefant (late type) from the Abt.653 HQ Company, Brzherzhany, Ukraine, July 1944

Panzerjäger Tiger (P) 8.8 cm PaK 43/2 L/71 “Ferdinand/Elefant” Sd.Kfz 184

Dimensions (L-W-H) 8.14 m x 3.38 m x 2.97 m
Total weight, battle-ready 65-70 tonnes
Crew 6 (Commander, Gunner, Two Loaders, Driver and Radio operator)
Propulsion Two Maybach HL 120 TRM 265 hp@ 2600 rpm
Speed (road/off-road) 30 km/h, 8-10 km/h
Range (road/off-road)-fuel 150 km, 90 km
Primary Armament 8.8 cm PaK 43/2 L/71
Secondary Armament One 7.92 mm M.G.34 machine guns
Elevation -5° to +14°
Armor 20 mm – 200 mm

Source:

K. Münch (2005) Combat History of German Heavy Anti-tank unit 653 In World War II, Stackpole Books.
Terry J. G. (2004), Tanks in Detail JgdPz IV, V, VI and Hetzer, Ian Allan Publishing
T. Anderson (2015) Ferdinand and Elefant tank Destroyer, Osprey Publishing
J. Ledwoch (2003) Ferdinand/Elefant, Militaria
R. Forczyk (2016) The Dnepr 1943, Osprey Publishing
V. Failmezger (2015) American Knights, Osprey Publishing
T. Melleman (2004) Ferdinand Elefant Vol.I, Aj.Press.
T. Melleman (2005) Ferdinand Elefant Vol.II, Aj.Press.
W.J. Spielberger (1967) Panzerjager Tiger (P) Elefant, Profile Publication.
D. Nešić, (2008), Naoružanje Drugog Svetskog Rata-Nemačka, Beograd
T.L. Jentz and H.L. Doyle (2004) Panzer Tracts No.9 Jagdpanzer
T.L. Jentz and H.L. Doyle (2004) Panzer Tracts No.16 Bergepanzer 38 to Bergeanther
T.L. Jentz and H.L. Doyle (2004) Panzer Tracts, Panzerkampfwagen VI P.
T.L. Jentz and H.L. Doyle (20) Panzer Tracts No.23 Panzer production from 1933 to 1945.
P. Chamberlain and H. Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
D. Doyle (2005). German military Vehicles, Krause Publications.
A. Lüdeke (2007) Waffentechnik im Zweiten Weltkrieg, Parragon Books.
Lt. Co. L. Vysokoostrovsky (1943) The Field Artillery Journal

20 replies on “Panzerjäger Tiger (P) 8.8 cm PaK 43/2 L/71 ‘Ferdinand/Elefant’ (Sd.Kfz.184)”

I am missing a few words about the advantages of such a complicated engine system

“Wa Prüf 6 made proposals to mount 150, 170, or even 210 mm heavy caliber guns on them, but nothing came from these proposals”
So this is where the idea for World Of Tanks’ GW Tiger P comes from?

There were no problems with the “complex powerplant” in the VK 45.01 (P). The reason the contracts for the Tiger Ausf. P were cancelled was due to the unreliability of the Typ 101 gasoline engines.

In the Panzerjäger Tiger (P) these were replaced by Maybach HL 120 engines but the rest of the drivetrain was retained exactly the same as it was on the VK 45.01(P)

the engines are literally the powerplant. if bad engines are not part of unreliable powerplant I don’t know what is. the drivetrain is also complex so that is accurate as well. they had numerous issues in the field with overheating of engines and drive motors, electrical issues, and they also used far to much valuable copper. just because they got the ones they built to work well enough to use them doesn’t mean that they didn’t decide that the whole thing was to complex and unreliable to base their entire heavy tank series on.

Hello, where did you get the source explaining that 4 Ferdinands and 8 Tigers were lost on the 8th July? I cannot find this anywhere. Would be most interested. It does not seem to tally with other loss records I have read about Tiger 1 tanks at Kursk. Other sources i have come across say the maximum lost in one day is 3 on 7 July from sPA 505.

Hello, in relation to my previous comment I wonder are you taking these 8 Tiger and 4 Ferdinand losses from the claims of Major Sankoksky who CLAIMED multiple TIGERs in this action but the only TIGER lost /knocked out was due to a side penetrating 85mm hit. These German tanks were from Kampfgruppe Burmeister against the 75th GRD. As far as I am aware Ferdinands were not involved in this action at all. Likely they hit PzIV with Schottpanzerung? I simply cant find these Tiger losses in the German records, especially 8 in one day.

Hello Antony the source for that information is the Lt. Co. L. Vysokoostrovsky (1943) The Field Artillery Journal. Sorry for the later reply, I just got back from vacation.

The Soviets were more prone to exaggeration than the other combatants. Even in the famous engagement around Prokharovka (July 1943 – Kursk campaign) the Soviets claimed that hundred of German AFV’s were destroyed and this was repeated by Western authors for decades, but in reality Prokharovka was a significant tactical victory for the Germans. They lost less than 50 AFV’s that day and some of those were recovered. The Soviets on the hand did indeed suffer massive losses that day.

“Pampas” was the nick-name given to Ernst Freiherr von Jungenfeld by his men when he was a commander in a PzkwIII company in France in 1940 (he was 47 at the time). It was painted on the rear of his turret. In May 1943 he was put in charge of the new Panzerjager Regiment 656 which contained former members of his regiment in France. (PzIII vs Somua S 35, Belgium 1940 by S.J.Zaloga)

It’s not a ‘Tank’ as designated in the title.
It’s a Tank Destroyer, which is Self Propelled Artillery, not a Panzer.
The same is true of all the other SPA you’ve mislabelled as Tanks.

The article is absolutely incorrect that the name change occurred in February 1944. The name change order by OKH was issued on May 1, 1944.

Source: “Combat History of sPzJgr Abt 653” by Münch

Hey Roy please read the article, the source regarding the name is T.L. Jentz and H.L. Doyle (2004) Panzer Tracts No.9 Jagdpanzer and D. Doyle (2005). German military Vehicles, Krause Publications.

You say the 653rd used white numbers with black outlines yet there is photographic evidence that is not the case. They both quite clearly show either solid black or solid red numbers. 332 and 214. Because of the monochrome photos we can’t know for sure if it’s black or red. So at the very least companies 2 and 3 did not use white and black numbers. Your own illustrated drawings also show solid black numbers.

I want to extend my thanks to the people that dedicte their time to maintaining this page. I build 1/35 scale models and this site is invaluable to me. THANK YOU to everyone involved.

I notice that several times through the article the term “engine” is used for both the electric motors and gasoline prime movers. in English usage an “engine” generally refers to a piston engine (which technically is usually referred to as a “prime movers” in heavy equipment and trucks), while a device that only creates propulsion is a “motor”. so to say it has “four engines” is confusing to people not familiar with the machine. it has two engines, which are prime movers, powering two motors that move the track. in automobiles engines are often called “motors” by tradition, and because they technically also serve as motors in that case, since they are both the source of power and the device directly powering the wheels via gearbox and drivetrain. most correct would be two gasoline prime movers driving two generators to supply electrical power through an electrical transmission system to two drive motors.

“During February 1943, Wa Prüf 6 issued a list of potential names for this vehicle. These included Sturmgeschütz auf Fahrgestell Porsche Tiger mit der langer 8.8, Panzerjäger Tiger (P) 8.8 cm PaK 43/2 L/71 Sd.Kfz 184 or the similar 8.8 cm PaK 43/2 Sfl L/71 Panzerjäger Tiger (P) Sd. Kfz. 184. The simplest one was Panzejäger Tiger (P).”
isn’t this why you just adopt a system of naming your equipment so you don’t need to decide on a complex formal designation and end up with a whole inventory of equipment using all different kinds of names that vary from item to item? even the US system made more sense than this, even if you ended up with multiple M1s or M3s if you left out the qualifier? even the British just gave a single name to each type, so it was a logical system if somewhat arbitrary. I can’t see the US saying “should we call our new tank the M4 Medium Tank with 75mm Gun, or Medium Tank with 75mm Gun M4, or Sherman, or M4 Sherman?” following of course the
-Light Tank M3 With 37mm Gun and
-Lee and
-M10 Tank Destroyer
in the list of official designations.
The US had the M3 Medium Tank, the M3 Light Tank, the M4 Medium Tank, the M5 Medium Tank, and M10 Tank Destroyer, etc. the Soviets used different systems but at least they used those systems when they were in effect, so you had the KV and IS series, as well as the T series and BT series, but it wasn’t just each model being assigned an arbitrary name.p

okay we really need a better explanation of the drivetrain of this machine. I give up trying to figure it out. after being very confused by the color cutaway showing a driveshaft running to the rear (apparently those are actually just PTO shafts that power what appear to be cooling fans, which doesn’t make any sense since they already have electric fans over the radiators… unless the engines and generators have separate cooling systems?), I still can’t make any sense of it. so two engines drive two generators directly, towards the front of the vehicle. the power is then sent to two drive motors powering a final drive to each rear sprocket. so then where is the “three speed gearbox”? are there two gearboxes, one for each side? that seems unlikely and unworkable. I had assumed it was a direct drive system, or at most each motor drove a final drive. but in the past systems driving each side separately have never worked well. if one engine fails, you are stuck, and it’s hard to equalize the power accurately. seems more likely there are two motors, but they combine into one gearbox/final drive unit that gives different speed ranges and lets you operate on one engine if needed, and steering etc is done in the usual manner. I can’t see any other plausible way to fit a gearbox into the system.

Leave a Reply

Your email address will not be published. Required fields are marked *