Categories
WW2 German Tank Destroyers

Sd.Kfz.186 Jagdtiger

Nazi Germany (1943-45)
Tank Destroyer – 74 Built

The Jagdtiger was the heaviest armored vehicle to see service in World War Two, yet paradoxically, the vehicle has remained somewhat enigmatic with confusion over its development, production and role. The design process started out with a demand for a heavy assault gun back in 1942 when the war was still in Germany’s favor and the army needed a heavily armored and armed vehicle to smash enemy fortifications. However, by the time the Jagdtiger, based on the Tiger II tank, came along two years later, the original need for the vehicle had vanished and it was put to work as a heavy tank destroyer instead. Despite its huge size, impressive armor and powerful main gun, the Jagdtiger failed to live up to expectations.

Chassis No. 305004, one of 11 Jagdtigers built with the Porsche suspension system. This vehicle is now part of the collection at The Tank Museum, Bovington. Photo: The Tank Museum

Tank Destroyer or Assault Gun

The majority of people looking at the Jagdtiger (English: ‘Hunting Tiger’) would conclude that the use of the vehicle, the ‘hunting’ part of its name and the shape of it would undoubtedly make it a tank destroyer. Nonetheless, it was actually originally conceived as an assault gun to support the infantry. The combination of heavy armor and a powerful cannon equally adept at penetrating enemy strong points, delivering high explosive, and defeating enemy armored vehicles was the priority, with the speed seen as less important. The range of fire of the Jagdtiger’s 12.8 cm gun could classify the vehicle as a self-propelled gun (indirect fire capability had been an original requirement but was subsequently dropped), and the confusion over name and role resulted in an argument within the German military over who controlled them. If the vehicle was designated as a Sturmgeschütz (Eng. Assault Gun), it would belong to the artillery but, if it was designated as a Panzerjäger (Eng. Tank Destroyer), it would belong to the tank destroyers. The StuG. argument was bolstered by Hitler and the Inspector-General of the Panzer Troops in late March 1944. On 13th July 1944, the squabble over the name was seemingly put to rest by Heinz Guderian, Chief of the Army General Staff (who was also the General of Artillery), when he listed the vehicle as “Panzerjäger with 12.8cm Pak. L/55 on Tiger II chassis” or ‘Jagdtiger’.

The Call For a 12.8 cm Gun

As far back as spring 1942, the German Army General Staff were requesting a 12.8 cm gun mounted on a self-propelled chassis as a ‘heavy assault gun’ capable of both supporting the infantry against armored targets (such as tanks and bunkers) as well as unarmored ones. By May 1942, Hitler was ordering a rifled anti-tank gun of that caliber and, in a letter from Wa Pruef 4 (German design office for artillery) to Friedrich Krupp of Essen on 2nd February 1943, the 12.8 cm Jagdpanzer concept was born. The letter set out the idea of mounting of a 12.8 cm Stu.K. (Sturm Kanone – Assault gun) on a modified Tiger H3. The ‘Tiger H3’ concerned was the Tiger II, which was not named as such until March 1943, following the abandonment of the the VK45.02(H) project, which was known at the time as Tiger II.

The requirements for the modifications meant moving the engine forwards on the chassis with the firm of Henschel und Sohn of Kassel responsible for that part of the project. The 12.8 cm gun in question was at the time intended to be taken, along with the gun gear such as brake and recuperator, completely unchanged from the Pz.Kpfw.VIII Maus – the 12.8 cm Kw.K. L/55 (Kw.K. – Kampfwagen Kanone – Fighting vehicle gun). Strong emphasis was also placed on the removal of the muzzle brake as this allowed the use of Treibspiegel (Sabot) shells for heavy anti-armor work. Developed by Krupp as the Treibspiegel-Geschoss mit H-Kern for the 12.8 cm gun on the Maus, these were high-velocity shells with a sub-calibre core made from an 8.8 cm Pz.Gr.40. Travelling at about 1,260 m/s, they were estimated to be able to penetrate 245 mm of armor at 30 degrees from 1,000 metres away. Although this shell was not developed to the point of service and issue for the Jagdtiger, the result was that the 12.8 cm gun could not have a muzzle brake for this would have adversely affected the sabot coming off the core as it left the barrel. Not using a brake, however, meant a lot more recoil energy needed to be dealt with on the mountings for the gun.

From Early Work to the Prototype

By the end of March 1943, the chassis destined for this 12.8 cm gun was going to be either from the Panther or Tiger II. A mockup was prepared on the hull of a Panther, but this was quickly discarded as being unsuitable. Drawings from Henschel for the alternative design on a Tiger II chassis were therefore to be ready by June 1943 and, initially, Dr. Erwin Aders (design lead at Henschel) was considering armor for the design to be up to 200 mm thick on the front and up to 100 mm on the sides, although this was to be subject to change in order to keep the weight to 70-tonnes or less.

Rival Tigerjäger Designs

On 12th April 1943, Henschel presented two designs for the vehicle which was being referred to as the Tigerjäger. The first design (Design A) disregarded the plan to move the engine to the front and kept the engine at the back, but even so, the hull still had to be lengthened by 300 mm. The frontal armor for this vehicle is described by Spielberger, Jentz, and Doyle (2007) as being 150 mm at 40 degrees and 200 mm thick on the 60 degree sloping part. The side armor had been reduced though, from the 100 mm desired in March to 80 mm in order to keep the weight down.

The width of the fighting compartment for the tank had been reduced too by 40 mm, as it would otherwise be too large to be shipped by rail. With an agreement on 14th April on the new design of the gun and the adoption of two-piece ammunition which simplified stowage, the whole gun and mounting could be moved 200 mm further back on the hull thus improving the center of gravity and taking off a lot of the load on the front wheels. Reducing the rail profile and keeping the heavy armor meant the movement of the gun was slightly restricted and reduced the depression available by 1 degree (from -8 to -7). A final modification was the lowering of the driver’s seat by 100 mm which lowered the plate over his head. This cover was designed to be a large plate encompassing both of the forward crew hatches (driver and radio operator) and was removable by a series of set-screws attaching it to the roof plate of the lower hull, allowing for the transmission to be removed. “This design choice was in response to lessons learned on the Tiger I and VK45.02(H) projects”. Neither of these had a removable cover and extracting the transmission for repairs involved first lifting the turret out of the hull! The Tiger II had a removable cover, though the turret had to be turned to allow full access. The cover did not solve the problems for this Tigerjäger design as even though there was no turret,the overhang of the gun prevented transmission removal; it therefore required the gun to be withdrawn from the casemate to do this task, no small job.

The second design (Design B) for a Tigerjäger followed the original requirement for the engine moved into the front but had significant drawbacks, not least that the vehicle was too large to ship by rail. The desired -8 gun depression could also not be achieved because with the engine and ancillaries in front of the casemate, it raised the hull roof. The gun would also have impeded maintenance of the engine whilst offering no substantial advantages over Design A. Design B, despite being the initial design demanded, was dropped. The Jagdtiger would follow the layout of Tigerjäger Design A.

The 12.8 cm Panzerjäger

By 5th May 1943, the vehicle, now being referred to as the ‘12.8 cm Panzerjäger’, was determined to weigh 75 tonnes. It was to have the field of motion for the 12.8 cm gun widened from 15 degrees each way to 18 degrees, but still wanting +15 to -8 for elevation. Based on the Tiger II, the armor was this new vehicle determined to be 200 mm thick on the front of the body, 80mm on the sides and back, and 30 mm on the roof. This roof thickness was an obvious compromise considering the Tiger I and Tiger II were to have 40 mm thick rooves to protect from plunging shell fire and aircraft attack. The 12.8 cm Panzerjäger dimensions were roughly fixed too: about 10 m long, 3.59 m wide and 3.47 m high. Fitted with the same 800 mm wide tracks as the Tiger II, this vehicle had a longer ground-contact length of 4.635 m resulting in a ground pressure of just 1.01 kg/cm2. Based upon these dimensions and the decided layout, a wooden mockup was ordered, although the design of the gun was not going to be finished by Krupp until 1st July 1943 and design changes were still taking place.

Henschel, to simplify production, had requested that the hulls be made separately to the casemate, but this was rejected as it made fire and waterproofing harder, and a rectangular hatch (700 mm x 600 mm) was added in the rear of the casemate for removal of the gun. The requirements set in May had slipped by June that year when Wa Pruef 6 agreed to allow just 10 degrees of traverse each side and -7.5 degrees of depression.

Around May 1943, Henschel had determined that as a result of design changes, the weight had been brought down to 70 tonnes complete (the hull alone weighing 43-tonnes) with 200 mm thick frontal armor, 80 mm on the sides and rear, and a casemate roof now 40 mm thick. Drawings for this vehicle were to be finished and submitted to Wa Pruef 6 by 15th June with the expectation that a prototype would be finished in December.

The wooden mockup of the vehicle referred to as the ‘12.8 cm Tiger-Jaeger’ was ready in September, as it was inspected on 28th September by Colonel Crohn (Wa Pruef 6) and Major Weiche (Inspector-General Armoured Troops), who recommended the elimination of aiming spot lamps, firing ports and the gunner’s hatch. Other changes included the enlargement of the commander’s hatch and rearrangement of the periscopes. The relatively small changes to the roof were added to a decision to increase the upper front plate from 200 mm to 250 mm and to make the hull roof 40 mm thick.

Wooden mockup of the 12.8 cm Panzerjäger. The presence of the aiming spot lamp still on the roof indicates this photo was taken probably no later than 28th September 1943. Source: Spielberger, Jentz, and Doyle

The amended and full-size wooden mockup was then shown off to Hitler on 20th October 1943 at the troop training centre at Ayrs, East Prussia, identified as ‘heavy Panzerjäger with 12.8 cm L/55 on Tiger II chassis.’

Full-size wooden mockup of the ‘12.8cm Panzerjäger’ shown off to Hitler on 20th October 1943. Of note are the small patches on the upper-left of the casemate perhaps indicating the location of the firing ports eliminated after 28th September 1943. In the background is a wooden mockup of a Jagdpanther and in the front of the picture is an Italian P.26/40 with the periscopes missing. Source: Spielberger, Jentz, and Doyle

Production was approved for this 12.8 cm Panzerjäger and the first production vehicle was ready on 6th April 1944.

Layout and Crew

Having considered both the Panther and Tiger hulls for the mount for the 12.8 cm gun, the vehicle selected for use was the Tiger II which was, at the time, still on the drawing board at Henschel. In order to fit the gun onto the chassis of the Tiger II, the chassis had to be lengthened by 260 mm and on top of this hull was placed a large flat-sided casmate for housing the main gun and four of the crew. The engine remained at the back and the transmission at the front, as on the Tiger II, and the hull crew positions were also retained. Inside this giant casemate would fit the no-less enormous 12.8 cm gun breech. In essence, this was the layout of the Jagdtiger, a box with a gun in the front of it sat on top of a Tiger II chassis.

The Jagdtiger had a crew of six men. The crew in the hull retained their role and positions from the Tiger II, with the driver located in the front left and the radio operator in the front right. This radio operator also had control over the secondary armament, a machine gun located in a mount in the glacis to his front. In the casemate were the remaining 4 crew. This crew consisted of a commander (front right), the gunner (front left), and two loaders located in the rear of the casemate. By 1945, with severe pressures on training caused by the war, some tank crews were even sent directly to the Nibelungen works to help with the production of the tanks they were to crew, both as a means to help familiarise them with the vehicles but also to help with production.

Production

Just as with Henschel, where the bodies of the Tiger and Tiger II were made by Krupp and then shipped to them for finishing and fitting into a fighting tank, the same is true of the Jagdtiger. The Nibelungen works did the construction, fitting, and assembly of components including the gun, but the basic armored hull was made at a different site, namely the Eisenwerke Oberdonau (Oberdonau Iron Works) in Linz, modern-day Austria.

The first prototype vehicle was assembled in Workshop VIII at the Nibelungen plant in Autumn 1943 but was fitted with a trial superstructure, Porsche suspension, and no armament. The hole in the glacis for the machine gun mount was blanked off and the vehicle was used for running trials. The second prototype was not finished until the new year and both prototypes (305001 with Porsche suspension and 305002 with Henschel suspension) were then delivered to the Army Ordnance Office for testing in February 1944.

Prototype Jagdtiger with Porsche suspension, Autumn 1943 at the Nibelungen plant. Source: Winninger

Despite the delivery of 15 hulls from Eisenwerke Oberdonau in April, 12 more in May, and 10 more in June 1944, production of further vehicles did not begin until June 1944, with just a single vehicle complete as production problems, including the preparation of machinery and rails inside the plant, were being resolved. Firstly, the Nibelungen works had to make changes to the production line in order to accomodate the fact that after the first batch of vehicles (10)* fitted with Porsche suspension had been finished, all future vehicles were going to have Henschel suspension. That was not the only production issue either. Eisenwerke Oberdonau had some production problems of their own which then caused knock-on problems for the Nibelungen works, not least of which affected quality. Vehicle 3005005, a Porsche suspension Jagdtiger, had such defects with the construction of the armor at the front that it was unfit for service and relegated to homeland use. The protracted development of the gun and mount had caused problems too which now became apparent. The Nibelungen works had to grind off up to 40 mm of steel from the inside walls of the casemate in places to allow the gun to traverse fully, and the cradle for the gun was a problem too. It was being made larger than it was designed to be and thus fouling on the front plate. This meant it had to be moved forward slightly with the outcome that it now fouled on the hull roof, restricting depression to just 6.5 degrees. With little option but to approve this 0.5 degree loss of depression, Wa Pruef 6 agreed to the changes but wanted them fixed as production went forward.

*Including the prototype this means 11 Jagdtigers were built with Porsche suspension: chassis numbers 305001, 305003-305012

Drilling out the holes for the suspension and the boring mills in Workshop V at the Nibelungen plant. Source: Wittinger

Other changes of a minor nature were made internally to the gun elevation mechanism, gun bridge, ammunition racks, and gunner’s seat. Externally, throughout production only five things were changed of consequence: the omission of sheet-metal shields over the exhausts (July 1944); the addition of a barrel brace (gun crutch) (August 1944); the addition of Zimmerit (from September 1944); the fitting of external hooks on the casemate sides for spare track links (December 1944); and the addition of ‘mushrooms’ (Pilzen) on the upper edges of the side and rear plates which were mountings for attaching a small crane.

Following a 12th October 1944 discussion with Hitler, it was planned to produce just 150 of these vehicles after which production would be switched over to the Panther. The planned 150 was broken down to an estimated rate of 30 Jagdtigers per month, a figure based on the availability of the 12.8 cm gun barrels, although 50 vehicles per month were demanded of the plant at Nibelungen which was building them.

Thirty guns a month would mean a complete production run of 5 months, and fifty vehicles a month would have reduced this to just 3 months worth of production. By 25th October 1944, with delays in the production of the Jagdtiger not meeting the numbers demanded, Hitler ordered that 53 12.8 cm anti tank guns from the Jagdtiger program should be mounted on captured Russian or French carriages to fulfill the needs of the army in the short-term.

The original order for 150 Jagdtigers was increased on 3rd January 1945 by Hitler, who demanded the continuation of production even though the production of the 12.8 cm gun barrels was a significant bottleneck in production. By the end of 1944, just 49 Jagdtigers plus the two prototypes had been finished, well behind the original schedule. Production was therefore scheduled to run through April 1945 with another 100 Jagdtigers planned, after which production would switch to the Tiger II instead. The Jagdtiger was not to be terminated however; production would simply switch to the firm of Jung in Jungenthal instead, with the first 5 planned to be ready in May 1945, 15 in June, and then 25 per month through to the end of the year.

On 25th February 1945, ‘extreme measures’ were ordered by Hitler to increase production of the Jagdtiger, which included the temporary expedient of fitting an 8.8 cm gun (the 8.8 cm KwK. Pak. 43/3) in lieu of the 12.8 cm piece if there were insufficient 12.8 cm guns available. During this period, by way of context, production of the Tiger II which had started in September 1943 was supposed to be reaching 50 vehicles a month from April through June 1944 (150 vehicles), but only 53 vehicles were completed during that period. By February 1945, when the ‘extreme measures’ were ordered to produce the Jagdtiger, production of the Tiger II was supposed to be 150 units a month but had only managed 42.

Vehicle number 54 during construction at the Nibelungen Works. Source: Schneider

Neither the rate of 30 per month (gun production) or 50 per month (vehicle production) were ever actually met, with monthly production in the region of 20 or fewer each month due to shortages of materials and labor combined with the effects of Allied bombing.

By the end of February 1945, just 74 vehicles (chassis number 305001 to 305075*) were completed. Along with the original prototype vehicle, this meant that production reached just 50% of the original requirement.

*See Below

A Jagdtiger hull damaged during a bombing raid on the Nibelungen works on 16th October 1944 affording a unique look inside. Source: Frohlich and Schneider respectively

Chassis Numbers

The official production number of Jagdtigers is usually quoted as running from serial number 305001 to 305075, meaning a total production of 74 vehicles. Chamberlain and Doyle (1997), state that chassis numbers went from 305001 to 305077 which would mean 76 vehicles. Winninger (2013) provides a production table from the factory showing serial 305075 was a March production serial number and that March production was to run from 305075 to 305081, with seven vehicles listed as delivered. April production lists serial number 305082 to 305088, another 7 vehicles, and then 305089 to 305098 (10 vehicles), with just 3 delivered. Some of these were supposed to be fitted with the 8.8 cm gun under Sonderkraftfahrzeug number Sd.Kfz.185 and some were built but not accepted, meaning the exact number of 12.8 cm armed Jagdtiger produced cannot be accurately determined.

Armor

The Jagdtiger, as can be expected of an assault gun, had the bulk of its armor at the front, with armor 250 mm thick on the front of the casemate, 150 mm thick on the glacis, and 100 mm thick on the lower front. The forward part of the hull had a 50 mm thick roof, although the rest of the roof over the casemate and engine deck was 40 mm thick. Of note here is that the roof of the casemate was not welded into place like the roof of the Tiger or Tiger II, but was actually bolted onto the superstructure.

Jagdtiger with the casemate roof unbolted and removed showing the enormous size of the breech for the 12.8 cm gun. Source: Spielberger

The lower hull sides were 80 mm thick and so were the upper hull sides, but these were also sloped inwards at 25 degrees affording the crew inside a good deal of protection from enemy fire as long as they remained facing the enemy or at an oblique angle.

Armour thicknesses for the Jagdtiger. Source: Jentz and Doyle

Even the rear of the Jagdtiger had 80 mm thick plates including the pair of large gas-tight doors at the back. The thinnest parts of the armor were under the sponsons over the tracks which were just 25 mm thick, and under the engine which was also 25 mm thick. The forward part of the lower hull was 40 mm thick providing good protection for the crew from mines. One final note on the armor is that was it not face-hardened, but rolled homogenous plate.

Manufacturing scheme for the Jagdtiger showing the massive casemate front armor to good effect. Source: Frohlich

Gun, Ammunition, and Performance

In February 1943, the letter from Wa Pruef 4 made it clear that the 12.8 cm gun for the vehicle was to be the same type as the one for the Pz.Kpfw. Maus: a 12.8 cm Kw.K. L/55 with the same gun gear and no muzzle brake. The elevation limits demanded were +15 to -8 degrees with a traversing field of 15 degrees each side. A design of this 12.8 cm gun was therefore requested to be ready by 10th March 1943, and after Krupp handed in the design for the 12.8 cm Stu.K on 28th April 1943, Henschel submitted its own FK-based design which moved the pivot point of the gun 120 mm further back. This moving of the gun’s pivot point allowed a depression of -7.5 degrees to where the gun met the roof, which despite a desire to lower it by 100 mm, could only be lowered by 50 mm instead.

Alone, this gun weighed 5,500 kg, with the cradle adding a further 1,000 kg. The reason for the delay in designing the mounting seems to stem from these issues over gun balance, as the designers at Henschel wanted the gun mounted further back in order to improve weight distribution,and as a result, a model of the gun was not ready from Krupp until 1st July that year. Development of the 12.8 cm gun though was slow, and the first 12.8 cm gun was not ready until the middle of August 1944. When first shown, the gun was mounted on a captured Soviet 152 mm M37 433(r) mount and later on a captured French 155 mm GBF-T cannon 419(f). It should be borne in mind too that the gun was not specifically designed for the Jagdtiger, the firm of Krupp had originally started developing this gun before the Jagdtiger was even planned.

On 15th May 1942 Hitler had expanded development of a 12.8 cm gun to include Rheinmetall-Borsig of Düsseldorf, and Skoda-Werke Pilsen and Aktiengesellschaft (A.G.) to assist Krupp in order to get the gun into production as soon as possible.

First firing trials of a 12.8 cm gun with Armor Piercing ammunition took place at Meppen in October 1943.

Even with their assistance, the work was slow. Rheinmetall’s design for the 12.8 cm gun reached the stage of several prototypes but was not approved, while the design from Skoda-Werke never left the drawing board. As such, only the Krupp 12.8 cm gun (made by Krupp at the Bertawerke in Breslau and at the Krupp plant in Essen) was ever mounted in the Jagdtiger and only about 160 of these guns were ever made.

12.8 cm Pak. 44 (Pak.80) L/55 Source: Frohlich

Despite some commentary on the internet to the contrary, this 12.8 cm had nothing to do with the entirely different 12.8 cm Flak 40 anti-aircraft gun which ended up being mounted on the two VK30.01(H) Tiger chassis, popularly know as Sturer Emil. What is more, the antiaircraft 12.8 cm was a two-piece barrel design, whereas the Pak. 12.8 cm was a single-piece barrel. Moreover, the ammunition for the anti-aircraft gun was unitary, whereas on this 12.8 cm it was to be a two-piece design to save internal space.

Once finished, this new Krupp gun was designated the 12.8 cm Pak. 44 L/55 (Pak – Panzerabwehrkanone) and later redesignated as the 12.8 cm Pak. 80. This gun was big and heavy; the barrel alone weighed 2.2 tonnes and was 7.02 metres long (rifling extended for 6.61 m of this) meaning that two barrel supports were needed for when the vehicle was travelling, one on the front glacis of the tank and a second internally within the casemate.

Despite the delay in development and delivery of this gun, Colonel Crohn wrote to Krupp on 24th September 1943 suggesting an improvement to the firepower before the first 12.8 cm L/55 was even finished. This new gun suggested was a 12.8 cm Kw.K. L/70 which could fit into the original and unmodified Krupp-mount for the L/55. Krupp replied to that idea on 21st October 1943, stating that it had completed a drawing of this plan and that with the 12.8 cm L/70 fitted, the centre-of-gravity of the vehicle was seriously affected, making it significantly nose-heavy and causing the gun to overhang the front by about 4.9 m. The solution offered by Krupp to this problem was to suggest an alternative scheme with the casemate moved once more to the rear with the engine-forwards, just like the Tigerjäger Design B. The idea for this longer 12.8 cm gun was then discontinued and the focus returned to the 12.8 cm L/55 instead.

The ‘extreme measures’ ordered by Hitler on 25th February 1945 to increase Jagdtiger production had included the possibility of substituting an 8.8 cm gun in lieu of the 12.8 cm piece to increase the speed of production. The fitting, or otherwise of this gun has been subject to a lot of confusion but it never entered service and in the end, these measures proved unproductive.

The original specifications called for a gun with a range of up to 21 km but a weight of less than 6.5 tonnes. This requirement would indicate that the gun for the Jagdtiger (an assault gun) was for use as artillery indirect-fire as much as it was for direct-fire. Traverse for the gun was limited to 10 degrees left and 10 degrees right with elevation ranging from -7 to +10 degrees. Direct-fire sighting from the telescopes ranged the gun for targets up to 4 km for the Panzergranate 43 Armor Piercing High Explosive (APCBC-HE) shell and 8 km for the Sp.Gr. L/50 high explosive shell.

Despite the original consideration of a special high-velocity anti-armor shell with a sub-caliber core, no such shell was deployed on the Jagdtiger. These shells known as Treibspiegel-Geschoss mit H-Kern used the 8.8 cm Pz.Gr.40 as the armor piercing core of the shell and were being developed for the Maus program at the time the gun was selected for modification into the Jagdtiger program. With the arrival of the Pz.Gr.43 and the significant increase it brought in terms of penetrating armor, the experimental and expensive idea for these sub-calibre rounds was effectively redundant. They have been included in the following table for the purposes of reference only.

.

Looking at the performance data from the various sources for the performance of the Pz.Gr.39 and Pz.Gr.43 provides a great deal of confusion, and not just in modern scholarship. A British intelligence report from 1944 quoting figures from a captured German document provided identical performance for the Pz.Gr.43 to that usually quoted in modern literature for the Pz.Gr.39. Contemporary documents from Germany also show a Pz.Gr.39 as Capped (APC) and not Ballistic Capped (APCBC) with those figures. What is unusual about the British intelligence document is that it quotes both the Pz.39 and the Pz.Gr.43 together, whereas other sources usually reference just the Pz.Gr.39 and omit Pz.Gr.43 performance. The question therefore is which is right and which is wrong. A table (below) is provided for comparison.

.
.

Secondary armament for the Jagdtiger consisted of a single MG.34 mounted in the front-right of the hull. For this machine gun, 1,500 rounds of ammunition were carried.

Stowage of ammunition inside the casemate of the Jagdtiger. Source: Schneider

The huge gun left little space for ammunition stowage. Ammunition was stored in the floor and side walls of the casemate and, even using two-piece ammunition, the Jagdtiger could carry just 40 rounds of ammunition. It is not known how many 8.8 cm rounds could have been carried for the vehicles (if any) which were fitted with that caliber gun, although it may not have been many more, as the 8.8 cm ammunition was single piece, which would have made stowage harder and less efficient. One final note on 12.8 cm armament is that at some point another gun between the 12.8 cm L/55 and the L/70 was contemplated. This was also a 12.8 cm gun but had a barrel length of L/66. It was not just the gun which changed either; the entire structure was lower by about 20 cm because of adjustments to the mounts for the gun. With the L/66, the gun projected 4.4 m from the front of the tank but still provided an elevation range of +15 to -7.5.

.
Modified Jagdtiger with 12.8 cm L/66. Source: Hoffschmidt and Tantum

Sadly there is no information about this proposed modification, but based on the discussion over improving the performance of the L/55, it would likely date to the end of 1943, although some unverified information suggests it was considered as late as November 1944. One additional feature other than the gun and lower casemate is the large box-structure at the back over the engine deck. Unfortunately only this side view is available, so the shape of this box is debatable. From the drawing, it does appear that the engine deck may be slightly shorter than on the production Jagdtiger, although this may simply be a mistake on the drawing as the dimensions are primarily concerned with the front end and not the back.

.

Optics

There is no point in having either a large gun or an effective shell if you cannot get the gun on target and get the shell to hit said target, and with a rate of fire of just 3 rounds per minute, the Jagdtiger was significantly slower to fire than other tanks, meaning it was all the more important that what was fired hit the target. One problem was the lack of a turret, which hindered all-round observation, and as a result, the Jagdtiger was fitted with a rotating hatch for the commander on the front right of the casemate with a periscope integrated into it. In front of this periscope was a rectangular flap within the hatch which could be opened separately. Through that hatch-within-a-hatch, the commander could insert a stereoscopic rangefinder. The commander was also provided with a single fixed periscope facing to the right.

Commander’s hatch on the front-right corner of the Jagdtiger with a fixed periscope and also a secondary hatch for the stereoscopic rangefinder. Source: Schneider

The gunner of the Jagdtiger, who was sat in the front left, did not have a roof hatch, but instead, had a large curved sliding cover through which a Winkelzielfernrohr (WZF) 2/1 10x magnification aiming telescope projected out. Behind this cover, on the roof, was a further periscope in a rotating mount and two more fixed periscopes pointed diagonally backwards from the rear corner at each side of the casemate.

Roof of the Jagdtiger facing backwards. The commander’s hatch appears bottom left of the image and the sliding cover for the gunner’s aiming telescope is bottom right. The circular hole directly behind the gunner’s telescope cover is a port for the Nahverteidigungswaffe (close defence weapon) Source: Schneider

In February 1943, it was decided that optics for the main gun were to consist of an Sfl.Z.F.5 and Rbl.F36 sight for both direct and indirect fire. Using the WZF 2/1 angled periscope, the vehicle could deliver accurate fire out to 4km with the Pz.Gr.43 and 8km with the Spr.Gr. L/5.0, although the original plan for indirect fire had been dropped along the way. The Jagdtiger was now just a direct-fire vehicle. Production vehicles were fitted with the Sfl.14Z and WZF 217 sights for the primary armament. Test firings of the 12.8cm gun showed the accuracy to be excellent with the Pz.Gr.43 achieving hits within 50% of the width and height of the target between 46cm and 86cm of the centre at 1000m, and between 90 cm and 118 cm at 2000 m. This was slightly worse for the standard AP shell with an accuracy of 128 cm to 134 cm of the centre of the target at 2000 m.

Arrangement of the gunner’s stereoscopic rangefinder. Note that the breech is incorrectly shown opening downwards rather than to the left. Source: Source: Spielberger, Jentz, and Doyle

Running Gear

Other than extending the hull, the suspension and running gear of the Jagdtiger was essentially unchanged from the Tiger II. It consisted of full width torsion bars for each of the nine wheel stations fitted with 800 mm diameter steel wheels running over 80 mm wide tracks with 95 links per side and a ground clearance of 460 mm.

One curiosity for many is that two early Jagdtigers (hulls 1 and 4) were fitted with the Porsche running gear from the Elefant for the purposes of evaluation after Dr. Porsche had convinced Hitler of the benefits of his suspension in January 1944. Consisting of four wheel-units made from a pair of 700 mm diameter steel road wheels on each side, the Porsche system offered a production advantage over the Henschel running gear. Porsche promised than it took a third less time to produce than Henschel’s system, reduced the hull construction time as well as machining time, required less maintenance, and could actually be completely replaced in the field without removing other parts and without the use of a jack.

Two base Jagdtiger hulls showing the obvious differences between the amount of machining required on each hull. The Porsche-suspension hull (left) clearly requiring less cutting than the Henschel-suspension hull (right). Source: Frohlich

Despite the use of Porsche suspension, the system still used torsion bars – 1,077 mm long bars – but these were mounted longitudinally rather than transversely across the hull, and had pairs of wheels connected on a bogie attached to the bar. This reduced the number of bars to just 4 with two pairs of wheels on each bar, and in so doing, saved about 1,200 kg in weight, 450 man-hours of work time, gained 100 mm more ground clearance, and saved RM 404,000 (Reichsmarks) in cost. Much more importantly though, the use of this suspension freed up space inside the vehicle, an entire cubic metre extra in fact.

Jagdtiger chassis number 305001 fitted with the Porsche running gear seen in Spring 1944. Source: Source: Spielberger, Jentz, and Doyle

However, this Porsche system was not adopted and only ten of the chassis were ever fitted with this system. The promise it held for improvements were simply not borne out by trials held in May 1944, and it failed to live up to the desired performance. In particular, it resulted in a lot of shaking on a hard road when driven at 14-15 km/h. Initially, this was blamed on the Type Gg 24/800/300 tracks, and as a result, these were switched for the Type Kgs 64/640/130 tracks from the Elefant, but to no avail. With testing behind it having proven unsuccessful, the Porsche system was abandoned and the Henschel system was retained instead. As a result, by September 1944, only production of the Henschel suspension Jagdtigers was underway.

Pictured in March 1945 near Morsbronn, this Jagdtiger is one of the 10 fitted with the Porsche running gear. Source: Schneider

The transmission for the Jagdtiger was the same standard gearbox as on the Tiger II, a Maybach eight-speed OLVAR OG40-1216B (made by Adlerwerke of Frankfurt and Zahnradfabrik of Friedrichshafen) connected to the same Maybach HL 230 P30 TRM as fitted to the Tiger II and Panther. This engine was simply underpowered for a vehicle of the bulk of the Tiger II, let alone this even heavier Jagdtiger. One option which was still at the planning stage by the end of the war was the replacement of that Maybach engine with a 16-cylinder X engine made by Simmering-Pauker.

800 hp 36.8 litre Simmering-Pauker X-16 engine with Mann und Hummel air filter. Source: Frohlich

Delivering up to 800 horsepower*, this 36.5 litre* engine would have provided a significant performance boost for the Jagdtiger, and for that matter, potentially for the Tiger II and Panther as well. The engine had the added advantage that it was more compact than the HL230 and well suited to the tight confines of a tank’s engine bay. The most noticeable change adding this engine to the Jagdtiger would have made would have been seen at the back with the exhaust near to the top of the back plate. The engine was never fitted and how far along plans were to incorporate it into production is unknown.

*some sources provide data for the X16 engine as 36.5 litre producing up to 760 hp and there is also an 18 cylinder version although data on both is often contradictory.

Simmering-Pauker X-16 engine as shown fitted in a Jagdtiger. Source: Frohlich

Paintwork

From the end of 1944 onwards, the exteriors of Jagdtigers produced at Nibelungen were painted in a red anti-corrosion primer which was then painted over in varying quality with dark yellow and green. The interiors which had previously been painted an ivory colour were left in the red primer colour instead to save time. Camouflage was left to units to apply in the field once they had received their vehicles.

Combat

The first user of the Jagdtiger was supposed to be 3rd Company Panzerjäger Training Abteilung 130, which was scheduled to receive 14 vehicles in March 1944, with two assigned to company staff and the three platoons receiving four each. Due to delays in production, that plan did not materialize and instead, the first user became Schwere Panzerjäger Abteilung 653 (s.Pz. Jg.Abt. 653), which had previously been operating the Elefant. By the end of November 1944, this unit had received 16 Jagdtigers.

1st Company s.Pz.Jg.Abt.653 took 14 Jagdtigers to the Western Front in December 1944 for the planned offensive in the Ardennes. Back on 3rd November 1944, these 14 Jagdtigers had been earmarked to form part of 3rd Company s.SS.Pz.Abt.501, but this was revoked by Hitler the next day. As it was, the 14 Jagdtigers were sent, but due to rail transportation issues resulting from Allied bombing, only 6 Jagdtigers managed to get to a staging area behind the lines at Blankenheim and took no part in the offensive. On 23rd December 1944, they were withdrawn as the entire s.Pz.Jg.Abt. 653 was being redeployed in order to take part in Operation Nordwind (Eng: Northwind).

On New Years Eve 1944, three Jagdtigers of s.Pz.Jg.Abt. 653 under the command of Commander Major Fromme and subordinated to the 17th SS Panzergrenadier Division ‘Gotz von Berlichingen’, 1st Army of Army Group G, took part in the operation. This unit saw sporadic action against American forces in the Schwenningen-Chiemsee area of Southern Germany but the successes were minor and after just a few days the unit was disbanded. At around this time, s.Pz.Jg.Abt. 653 had a listed strength of just six Jagdtigers on 4th January 1945. By 9th January 1945, s.Pz.Jg.Abt. 653 was down to just two Jagdtigers in operational condition in the area of Boppard, where there was a repair depot, albeit without cranes. Of note on maintenance is that in the period from 30th December 1944 to 26th April 1945, s.Pz.Jg.Abt. 653 had a peak of 41 Jagdtigers with a peak operational readiness of 38 out of 41 on 15th March 1945 and its lowest operational readiness on 22nd March with just 2 out of 33 Jagdtigers operational.

Two Jagdtigers of s.Pz.Jg.Abt. 653 took part in combat near to an enemy bunker line adjacent to the German town of Auenheim on 17th January 1945. Attached to XIV SS Army Corps, they were used for fire support for an infantry attack. The next day, they were in action again against American forces and the German report on their action showed that their accuracy at 1,000 m against the enemy bunker was excellent, and after just two shots, the armored cupola of the bunker was burning. When the Americans counterattacked with tanks, one Sherman was hit and knocked out by means of a high explosive shell. In total, these two Jagdtigers fired 56 shells (46 HE and 10 Anti-tank) and suffered no losses to enemy fire. The unit did lose at least one Jagdtiger in this period though; it was later captured by US forces after having been abandoned in working order.

The fate of many Jagdtigers was to break down or run out of fuel and be destroyed by the crew; others fell victim to the total air-superiority enjoyed by the Allies towards the end of the war. This Porsche-suspension vehicle belonging to s.Pz.Abt.653 was destroyed by the crew setting off a charge internally which, in turn, detonated the ammunition completely destroying the vehicle. Source: Culler

On 5th February 1945, s.Pz.Jg.Abt. 653 had 22 Jagdtigers ready for action and a further 19 under repair when it supported the left flank of First Army of Army Group G in action in the region of the Drusenheimer Forest near to the French/German border. Whatever tactical successes the unit may have had however were at odds with the totally hopeless strategic position, and on 5th May 1945, the remaining Jagdtigers of s.Pz.Jg.Abt. 653 surrendered to Allied forces near Amstetten, where Soviet and American forces had met. One Jagdtiger surrendered here was subsequently taken back to the Soviet Union and remains in the collection at Kubinka.

The other user of the Jagdtiger was s.Pz.Abt.512, formed 11th February 1945 at Paderborn from the remnants of s.Pz.Abt.424 (formerly s.Pz.Abt.501) and with troops from s.Pz.Abt.511. Forty-two Jagdtigers were destined for this unit consisting of 10 for each of three companies (30), one for each of the company commanders (3), and one for each platoon commander (9), and it was expected to be fully operational by the beginning of March 1945.

1st company s.Pzj. Abt. 512 under the command of Oberleutnant Ernst had only half its nominal complement of 12 Jagdtigers when it engaged US forces at the Remagen bridgehead. These six tanks first retreated to the area of Siegen and then on through the Ludenscheid-Hagen area to the Ergste region, and then once more to relieve German forces at Unna.

2nd Company, under the Command of Oberleutnant Carius, was shipped by rail to the area of Siegburg where it fought alongside LIII Panzer Corps. Two vehicles were lost and 2nd Company retreated along the Sieg when two more were lost to enemy air attacks. There were two further losses in combat around Siegen and Weidenau to mechanical failure.

On 11th April 1945, 2nd Company, which had only been cleared for combat on 30th March, was involved in the defence of Unna against the 1st and 9th US Armies advancing on Paderborn. The five Jagdtigers of the unit stood no chance of halting the American advance. 2nd Company was at a strength of just 7 Jagdtigers by the time of its surrender on 15th April. The 1st and 3rd Companies of s.Pzj. Abt. 512 fared no better and surrendered on 16th April at Iserlohn. In its short existence the unit had achieved relatively little, although 1st Company was credited with the destruction of 16 enemy tanks in the region south of Unna alone, meaning in one way that these vehicles were eclipsing their Allied rivals, albeit too little and far too late for Germany.

Jagdtiger knocked out by fighter-bombers near to St.Andreasberg, Harz mountain region 16th April 1945.

Nine Jagdtigers of s.Pz.Jg.Abt.512 remained in Austria though and were put to use by the 6th SS Panzer Army. On 9th May 1945, they engaged Soviet tank forces and destroyed several enemy tanks before they abandoned their last two serviceable vehicles and retreated towards the Americans to surrender to them rather than the Soviets. An unknown number of Jagdtigers were also used in the region of the Harz Mountains at the end of the war.

Conclusion

The fate of many Jagdtigers was simply to be abandoned or blown up by their own crews. Maintenance was a huge issue as the already overstressed components intended for the Tiger II were stretched yet further with the additional 10 tonnes from this vehicle. A lack of spare parts, a lack of maintenance equipment such a heavy recovery vehicles, cranes, and specialist tools combined with inexperienced crews (especially drivers) meant that the Jagdtiger never reached its potential on the battlefield. The value of the vehicle is also questionable. Big, heavy, and labor intensive, the Jagdtiger cost the equivalent of two Panzer IVs to construct and on the battlefield they failed to provide a return on this enormous investment worthy of their cost. The consideration of bigger guns like the L/70 when the L/55 was sufficient for the work at hand, the changing between suspension types at the start of production, and the rush to get the Jagdtiger into service stand in contrast to what it achieved. The largest and heaviest tank to see service in WW2 simply failed to perform. The expectations placed upon it as some kind of panacea to fundamental failings in German military strategy, where bigger and heavier tanks with bigger and more powerful guns could stem the tide of Allied armor attacking Germany from both sides, were misplaced. Worse still, the resources it consumed were actually counterproductive to Germany’s war aims. Nonetheless, the Jagdtiger remains a powerful symbol of both the technical advances and also the limits on German industry in a wartime economy.

Surviving vehicles

Jagdtiger #305004 fitted with Porsche suspension – The Tank Museum, Bovington, UK
Jagdtiger #305020 fitted with Henschel suspension – Fort Benning, Georgia, USA
Jagdtiger #305083 fitted with Henschel suspension – Kubinka Tank Museum, Kubinka



Jagdtiger in a ‘Dunkelgelb’ scheme.


Jagdtiger in a 3-tone camoflauge scheme


Jagdtiger 331 of 3rd Kompanie, Schwere Panzerjäger-Abteilung 653, Germany, March 1945


Jagdtiger 102, Schwere Panzerjäger-Abteilung 653, Germany, March 1945

These illustrations were produced by Tank Encyclopedia’s own David Bocquelet.

Specifications

Dimensions (L-w-h) 10.654 x (including gun) x 3.625 x 2.945 meters
Total weight, battle ready 72.5 tonnes (Porsche suspension) 73.5 tonnes (Henschel suspension)
Crew 6 (Driver, Radio operator/hull machine gunner, Commander, Gunner, 2 Loaders)
Propulsion Maybach HL230 P30 TRM 700hp Petrol engine
Suspensions Double torsion bars and interleaved wheels
Speed (late model) 38 km/h (road)
Armament 12.8 cm PaK 44 L/55 -7° to +15° elevation, traverse 10° R and 10° L
Armor Glacis: 150mm at 50 deg.
Hull Front (Lower): 100mm at 50 deg.
Hull Front (Roof): 50mm
Hull Sides (Lower) 80mm (vertical)
Hull Sides (Upper & Casemate): 80mm at 25 deg.
Hull Rear 80mm at 30 deg.
Casemate (Roof): 40mm
Casemate (Front): 250mm at 15 deg.
Casemate (Rear) 80mm at 5 deg
Engine Deck: 40mm
Floor (Front): 40mm
Floor (Rear): 25mm
Built 74
For information about abbreviations check the Lexical Index

Video

Surrender of s.Pz.Jg.Abt.512 to US troops at Iserlohn April 1945

Sources

British Intelligence Objectives Sub-Committee. (1945). BIOS report 1343: German Steel Armour Piercing Projectiles and Theory of Penetration. Technical Information and Documents Unit, London.
Chamberlain, P., Doyle, H. (1993). Encyclopedia of German Tanks of World War Two. Arms and Armour Press.
Culer, B. (1989). Tiger in Action. Squadron/Signal Publications, TX, USA
Datenblätter für Heeres Waffen Fahrzeuge Gerät W127. (1976).
Duske, H., Greenland,T., Schulz, F. (1996). Nuts and Bolts Vol.1: Jagdtiger
Frohlich, M. (2015). Schwere Panzer der Wehrmacht. Motorbuch Verlag, Germany
General Inspector of the General of the Panzertruppen. (26th June 1944). Notes.
Hoffschmidt, E., Tantum, W. (1988). German Tank and Antitank  World War II, WE Inc., CT, USA
Jentz, T., Doyle, H. (1997). Panzer Tracts No.9: Jagdpanzer. Darlington Productions, MD, USA
Jentz, T., Doyle, H. (2008). Panzer Tracts No.6-3: Schwere Panzerkampfwagen Maus and E100. Darlington Productions, MD, USA
Jentz, T., Doyle, H. (1997). Tiger Tanks: VK 45.02 to Tiger II. Schiffer Military history, PA, USA
Lilienthalgesellschaft für Luftfahrtforschung. (1943). Die Vorgänge beim Beschuß von Panzerplatten, 166, Berlin, Germany
Schneider, W. (1986). Rarities of the Tiger family: Elephant, Jagdtiger, Sturmtiger. Schiffer Publishing, PA, USA
Spielberger, W., Doyle, H., Jentz, T. (2007). Heavy Jagdpanzer: Development, Production, Operations. Schiffer Military History, PA, USA
US Army. (1950). Project 47: German Tank Losses. Historical Division European Command. US Army.
US Navy. (September 1945). Technical Report 485-45 – German Powder Composition and Internal Ballistics for Guns. US Naval Technical Mission in Europe Report.
War Office. (25th October 1944). 12.8cm A.Tk. Gun Pak.44 on Pz.Jag. Tiger (Pz.Kpfw. Tiger B Chassis) Sd.Kfz.186 JAGDTIGER. Appendix D War Office Technical Intelligence Summary, No.149 1944.
War Office. (25th April 1945). Technical Intelligence Summary Report 174 Appendix C.
War Office. (9th August 1945). Technical Intelligence Summary Report 183 Appendix B.
Winninger, M. (2013). OKH Toy Factory. History Facts Publishing


Tanks Encyclopedia Magazine, #3

Tanks Encyclopedia Magazine, #3

The third issue covers WW1 armored vehicles — Hotchkiss Htk46 and Schneider CA and CD in Italian Service. WW2 section contains two splendid stories of the US and German ‘Heavy Armor’ — T29 Heavy Tank and Jagdtiger.

Our Archive section covers the history of early requirements for the Soviet heavy (large) tank. Worth mentioning, that the article is based on documents never published before.

It also contains a modeling article on how to create a terrain for diorama. And the last article from our colleagues and friends from Plane Encyclopedia covers the story of Northrop’s Early LRI Contenders — N-126 Delta Scorpion, N-144 and N-149!

All the articles are well researched by our excellent team of writers and are accompanied by beautiful illustrations and photos. If you love tanks, this is the magazine for you!
Buy this magazine on Amazon!


Categories
WW2 German Tank Destroyers

Jagdpanzer IV

Nazi Germany (1943)
Self-Propelled Anti-Tank Gun – 750-800 built

During the war, the German Army faced increasing numbers of enemy tanks. As the German industry lacked the capacity to produce large quantities of tanks, another solution was urgently needed. The most obvious solution was to produce anti-tank destroyers which were cheaper, easier to conceal, and could carry larger guns. The German already had the excellent StuG III, which managed to destroy enemy vehicles in the thousands. But, in 1943, work began on a new vehicle based on the Panzer IV tank chassis, later known as Jagpanzer IV.

First Jagdpanzer Designs

Even before the war, the famous German commander General Heinz Guderian had predicted the need for highly mobile self-propelled anti-tank vehicles, later known as ‘Panzerjäger’ or ‘Jagdpanzer’ (tank destroyer or hunter). The terms ‘Jagdpanzer’ and ‘Panzerjäger’ were, according to Germany military terminology and concepts, essentially one and the same. After the war, however, the ‘Jagdpanzer’ term would be used to describe the fully enclosed tank destroyers, while ‘Panzerjäger’ would be used for the open-topped vehicles.

In March of 1940, the first attempt to build such a vehicle was made. This was the 4.7 cm PaK (t) (Sfl) auf Pz.Kpfw. I, generally known today as the ‘Panzerjäger I’. It was more or less a simple improvisation, made by using a modified Panzer I Ausf.B tank hull and mounting a 4.7 cm PaK (t) gun (a captured Czechoslavkian 4.7 cm gun – hence the ‘t’ for ‘Tschechoslowakei’ after the name) with a small protective shield fitted to it. Later, during the attack on the Soviet Union and the battles in North Africa, the need for effective anti-tank vehicles became of greater importance for the Germans. The appearance of the towed 7.5 cm PaK 40 in increasing numbers somewhat solved this problem, but the main issue with this gun was its lack of mobility.

The need for mobile anti-tank vehicles would lead to the development of the ‘Marder’ series, which was based on several different tank chassis and armed with powerful and efficient anti-tank guns. Captured tanks and other vehicles were also reused for this purpose. In 1944, the Nashorn, armed with the excellent 88 mm Pak 43, was put into production. However, most of these types of vehicles were hastily designed and built and, while they did the job, they were far from perfect.

These vehicles were built by using different tank chassis and installing a gun with limited traverse in an open-topped superstructure. The two main issues were the great height, which made them difficult to camouflage, and the general lack of effective armor.

The German infantry support self-propelled assault gun, the Sturmgeschütz, or simply ‘StuG’ (based on the Panzer III), proved to have great potential when used as a tank hunter. It had relatively good armor, a low profile, and could be armed with the longer barrelled L/48 7.5 cm gun. The mass-produced StuG III Ausf.G armed with the longer 7.5 cm gun (L/48) was able to efficiently fight almost all Allied tanks (except for the heaviest) up to the end of the war. The StuG vehicles were also much easier, quicker, and cheaper to build than their tank equivalent.

In 1942, the first plans to equip the StuG with a stronger gun and armor were made. These would eventually lead to the development of a series of three different Jagdpanzer designs based on the Panzer IV tank chassis. Despite the initials plans to equip the first Jagdpanzer IV with the longer 7.5 cm L/70 gun, due to insufficient stocks, the 7.5 cm gun L/48 had to be used instead and thus the Jagdpanzer IV was created.

History

The story of the Jagpanzer IV began in September 1942, when the Waffenamt issued a request for the development of a new design of Sturmgeschütz – the ‘Sturmgeschütze neue Art’ (Stu.Gesch.n.A.) series. The new vehicle was to be armed with the 7.5 cm KwK L/70 gun and protected with 100 mm frontal and 40 to 50 mm of side armor. It was intended to have the lowest possible height, a top speed of 25 km/h and a weight of up to 26-tonnes.

The manufacturer Alkett was one of the first to present a project of such vehicle based on the Panzer IV chassis that could be armed either with a 7.5 cm L/70 (Gerät No.822) or 10.5 cm (Gerät No.823) gun. In late October 1942, a scale model was even presented to Adolf Hitler. While Hitler was satisfied with this proposal, for unknown reasons, the Alkett vehicle was never accepted. The future development of the Sturmgeschütze neue Art was to include components of the Panzer III tanks. Due to the high demand of StuG III, which was based on the Panzer III chassis, this was not possible. In addition, there was a proposal to design and build a completely new chassis. Due to the general lack of industrial capacity and time, this was not possible either. So, the most obvious solution was the Panzer IV chassis, as it was available in sufficient numbers. Krupp proposes its own Jagdpanzer (Panzerjäger IVb E39) project, based on the Geschützwagen IVb with six larger road wheels per side, but nothing came from this. Another change to the initials plans was the choice main gun, as the longer 7.5 cm L/70 gun was needed for the Panther tank and the 7.5 cm gun L/48 had to be used instead.

Vogtlandische Maschinenfabrik AG (Vomag) proposed its own project to the German Army, the Gerät No.821. The wooden mockup was completed by May 1943, when it was presented to Adolf Hitler. This wooden mockup was different from the later-built vehicles as it was based on an unchanged Panzer IV Ausf.F tank chassis. After the presentation of the new Jagdpanzer IV, Adolf Hitler was satisfied and ordered that its development should continue. A working prototype made of soft steel and was presented to Hitler in late 1943. This vehicle was similar to the wooden mockup by having the rounded front corners but the Panzer IV’s front hull was heavily modified with new angled armor plates. In addition, on the Jagdpanzer IV’s superstructure sides, firing ports for a 9 mm MP-38/40 submachine gun were placed (one on each side). Both of these features would be dropped on the production vehicles in favour of a simpler armor design and deletion of the side firing ports. Depending on the source, a small number (probably a few) of the 0-series were built and used only for training.

The first wooden mockup was built using an unmodified Panzer IV Ausf.F tank chassis. It was presented to Hitler in May 1943. Source: https://warspot.ru/11786-luchshiy-stug
The front view of the first Jagdpanzer IV prototype. It can be easily identified by the rounded corners of the front armor plate. This design would only complicate production and, mostly for this reason, was not adopted. Source: https://warspot.ru/11786-luchshiy-stug
Side view of the prototype. The small round shaped plug on the side is covering a firing port for the crew’s MP-38/40 submachine gun. Source: https://warspot.ru/11786-luchshiy-stug

While the Jagdpanzer IV’s development history seems straightforward at first glance, it was actually followed by a fight between the German artillery and tank branches. Initially, the Jagdpanzer IV’s development was initiated by the artillery branch in the hope of improving its Sturmgeschütz (StuG III) vehicles with a new design known as the Sturmgeschütze neue Art. But, during its development, General Heinz Guderian insisted that it should be reclassified as a Panzerjäger and assigned to the Panzer units. In the end, Guderian won and the Jagdpanzer IV was allocated to existing Panzerjäger units (which were part of Panzer and Panzer Grenadier Divisions) instead of the Sturmartillerie (assault artillery) units. This led to the consequence that the new Jagdpanzer IV was allocated to units that had little prior experience with this kind of vehicle. At the same time, the Sturmartillerie units which had experience operating such vehicles were denied a weapon that could have potentially increased their effectiveness.

To complicate the whole situation further, sources are not clear about the influence that Guderian had on the Jagdpanzer IV development. According to some sources, Guderian was against the new Jagdpanzer IV project from the start, as its development and production would put enormous stress on the Panzer IV production. Whatever the case, what is certain is that Adolf Hitler liked this idea and asked for the start of production and, later in the war, he asked for the Jagdpanzer IV to replace the Panzer IV tank on the production lines.

Designation

This vehicle had several different designations assigned to it during the war, including Klein Panzerjäger der Firma Vomag (May 1943), Stu.Gesch.n.A. auf Pz.IV (December 1943), Panzerjäger IV (March 1944), Jagdpanzer IV Ausf.F (September 1944) and Jagdpanzer IV (November 1944). As today it is generally best known under the Jagdpanzer IV designation, this article will use this name throughout.

Design

The Chassis

The Jagdpanzer IV was built by using the chassis of the Panzer IV Ausf.H tank, which was, for the most part, unchanged. The most obvious change was the new angled superstructure and the redesigned sharply angled lower front hull.

The Panzer IV Ausf. H was used for the base of Jagdpazner IV. Source: http://www.panzernet.net/panzernet/stranky/tanky/pz4.php
While based on the Panzer IV, the Jagdpanzer IV had a completely new design for the lower front hull. Source: https://warspot.ru/11786-luchshiy-stug

Suspension and Running Gear

The suspension and running gear were the same as those of the original Panzer IV, with no changes to their construction. They consisted of eight small double road wheels (on each side) suspended in four pairs by leaf-spring units. There were two front drive sprockets, two rear idlers and eight return rollers in total. The standard Panzer IV’s return rollers were, later during the production, replaced with ones made of steel due to the lack of rubber. In addition, by the end of production, some vehicles had only three return rollers on each side. The ground clearance was also increased to 40 cm. Depending on the need or availability, wider (Ostketten) tracks could be used instead of regular tracks in order to increase driving performance in mud or snow.

The unchanged Panzer IV suspension and running gear are evident here. Source: https://warspot.ru/11786-luchshiy-stug

The Engine

The engine was the Maybach HL 120 TRM which produced 265 hp at 2600 rpm. The maximum speed was 40 km/h (15-18 km/h cross-country) with an operational range (with 470 l fuel) of 210 km. The engine and the crew compartment were separated by a fire-resistant and gas-tight armored firewall. In order to avoid any fire accidents, an automatic fire extinguisher system was installed in the engine compartment. The original position of the Panzer IV fuel tanks (located under the turret) had to be changed in order to lower the vehicle’s height. Two fuel tanks were placed under the gun and a third smaller one in the engine compartment. In order to refuel the front tanks, two (once on each side) fuel filler pipes were located behind the front drive sprockets.

The superstructure

The new superstructure was well protected with its angled, thick and simple armor design. The angled shape of the superstructure provided thicker nominal armor and also increased the chance of deflecting enemy shots. This way, the need for more carefully machined armored plates (like on Panzer III or IV) was unnecessary. Also, by using larger one-piece metal plates, the structure avoided a lot of welding, making it much stronger and also easier to produce. The upper hull was built out of surface-hardened steel plates (Type E 22) manufactured by Witkowitzer Bergbau und Eisenhütten.

For the lower hull, the upper front armor plate was 60 mm thick at a 45° angle, and the lower plate was 50 mm at a 55° angle. The side armor was 30 mm thick, the rear 20 mm and the bottom was 10 mm. The hull crew compartment had 20 mm of bottom armor.

The new upper superstructure frontal armor was 60 mm at a 50° angle, the sides were 40 mm at a 30° angle, the rear armor was 30 mm, and the top was 20 mm. The engine compartment design and armor were unchanged with 20 mm all around and 10 mm of top armor. In May 1944, in the hope of improving the vehicle’s survivability, the front armor thickness of the hull and the superstructure was increased to 80 mm. The Jagpanzers IV were also provided with Zimmerit anti-magnetic coating, but in the late stages of the war, its use was abandoned. Additional 5 mm thick armor plates were also provided for extra protection of the engine compartment’s sides. The Jagdpanzer IV could be equipped with additional 5 mm thick armor plates (Schürzen) covering the side of the vehicle. In practice though, these would rarely last long and would simply fall off the vehicle during combat operations.

The Weaponry

The tank destroyer’s main armament was the 7.5 cm PaK 39 L/48 cannon produced by Rheinmetall-Borsig. In essence, this was the same weapon as the 7.5 cm StuK 40 gun used on the StuG, but slightly modified to be mounted on the new vehicle. The elevation of this gun went from –8° to +15° (–5° to +15° or –6° to +20° depending on the source) and the traverse was 15° to right and 12° left. The main gun was not placed at the vehicle’s centre but was instead moved some 20 cm to the right side, mainly because of the gun sights. The gun was protected by the round-shaped Topfblende gun mantlet. The ammunition supply for the main gun was 79 rounds. Usually, half were armor-piercing (7.5 cm Pzgr.) and the other half high explosive rounds (7.5 cm Sprgr.). This was not always the case as, depending on the combat situations and needs, the ammunition load could be changed. According to some sources, the first few pre-production vehicles were armed with the 7.5 cm L/43 gun.

Initially, the Jagdpanzer IV vehicles produced were equipped with a muzzle brake. However, firing trials held in April 1944 showed that the gun could be fired successfully without the gun muzzle brake. The introduction of an improved recoil cylinder also affected the decision of not installing the muzzle brake anymore. In the field, Jagdpanzer IV crews often removed the muzzle brake due to the dust clouds created during firing. This reduced visibility but more importantly, gave away the vehicle’s position to the enemy.

Early built vehicles are easily identified by having a muzzle brake, two hemispherical-shaped machine gun ports and the front-mounted spare tracks. Source: https://www.yaplakal.com/forum2/st/25/topic1261749.html

The later-produced vehicles did not have the threaded ends on the barrel, as they were no longer needed. There were also experiments with fixed non-recoiling mounts, known as ‘neur Art Starr’. Two Jagdpanzers IV were modified for this purpose in September 1944, though this was unsuccessful and soon abandoned, but continued on the Jagdpanzer 38(t).

The muzzle brake and the left machine gun port were removed from the Jagdpanzer IV production. This vehicle lacks both of them. Source: http://www.panzernet.net/panzernet/stranky/samohybky/stuh42.php

The secondary weapon used was the 7.92 mm MG 42 machine gun with some 1,200 rounds of ammunition. Unlike most other German vehicles, a ball mount was not used on this vehicle. Instead, the machine gun could be fired from two front gun ports (located on the left and right of the main gun), which were 13 cm wide. These two machine gun ports were protected with hemispherical-shaped armored covers. After March 1944, the left machine gun port was removed because it was difficult to use.

An additional machine gun mount (Rundumsfeuer) could be placed on top of the superstructure. It could be fired from inside the vehicle. However, the use of the Rundumsfeuer machine gun mount was also deleted early in the production run. The Jagdpanzer IV was also equipped with the Nahverteidigungswaffe (close defense grenade launcher), with some 16 rounds of ammunition (high explosive and smoke rounds), located on the vehicle top. But, due to the general lack of resources, not all vehicles were provided with this weapon. In such cases, the Nahverteidigungswaffe opening hole was closed off with a round plate.

A smaller number of initial produced Jagdpanzer IV had the Rundumsfeuer placed on top of the superstructure. Source: https://warspot.ru/11786-luchshiy-stug

The Crew

The four-man crew consisted of the commander, gunner, loader/radio operator, and the driver. The driver’s position was on the front left side, but his view of the surrounding area was limited, as he only had a front-mounted periscope. Behind him was the gunner’s position, who was provided with a Sfl.Z.F.1a gun sight for acquiring targets. When in use, the sight was projected through the sliding armored cover on the vehicle’s top armor. Behind these two was the commander’s position, who had a rotating periscope located in the escape hatch and one pointing to the left. The commander had a small additional hatch door for the use of a retractable Sf.14Z telescope. The commander was also responsible for providing the loader with the ammunition located on the left sidewall.

The last crew member was the loader, who was positioned on the vehicle’s right side. He operated the radio (Fu 5 radio set) which was located to the right rear and he also doubled as the 7.92 mm MG 42 machine gun operator. There was a small opening located above the machine gun which provided the gun operator with a limited view of the front. When not in use, the machine gun could be pulled into a small travel lock which was connected to the vehicle’s roof. In this case, the machine gun port could be closed by pivoting the armor cover. The use of this machine gun type is strange, as the usual hull-mounted machine gun in all German armored vehicles was the 7.92 mm MG 34. Nearly all periscopes were protected with an armored flap cover. The crew could enter the vehicle through two hatches located on the top of the vehicle. There was an additional floor escape hatch door in the center of the vehicle that could be used in the case of an emergency.

In order to remove any extra weight from the front, most spare parts and auxiliary equipment were moved to the rear engine compartment later during the production. This included things such as spare tracks, wheels, repair tools, fire extinguisher, and the crew’s equipment.

A rear view of the Jagdpanzer IV, with the spare tracks visible here. Initially, the spare tracks and wheels were carried on the front, but due to the increase in weight (due to the increased armor protection), these were moved to the back to avoid putting too much stress on the running gear. Source: https://warspot.ru/11786-luchshiy-stug

Jagdpanzer IV Befehlswagen

An unknown number of Jagdpanzer IV were modified to be used as Befehlswagen (command vehicles). These vehicles had an additional FuG 8 radio station installed in addition to one extra crew member. The Befehlswagen can be easily identified by the added second radio antenna located on the rear left side.

Further Development

From the very start, the new Jagdpanzer IV project was intended to be armed with the longer 7.5 cm L/70 gun. As these were not available in sufficient numbers, this was initially not possible. Once the 7.5 cm L/70 gun production was increased so that sufficient numbers could be spared for the Jagdpanzer IV project, work on an improved Jagdpanzer IV armed with this gun was immediately started. After a period of modification and testing in the first half of 1944, production of a new Jagdpanzer IV version armed with the long 7.5 cm gun finally begun in November 1944. The new vehicle was named Panzer IV/70 (V) and by the time war ended, under 1,000 had been produced.

The development of the Jagdpanzer IV eventually lead to the Panzer IV/70 (V). Source: http://www.panzernet.net/panzernet/stranky/stihace/jgdpz4.php

Due to the obsolescence of the Panzer IV, further attempts were made to find a way of arming it with the long 7.5 cm gun. As installation in the turret was not possible, the only practical and real solution was a self-propelled configuration. In order to speed up the development on an unchanged Panzer IV tank chassis, a slightly modified Panzer IV/70 (V) superstructure (same as the Jagdpanzer IV but modified to be able to carry the long 7.5 cm gun) was placed. The new vehicle was named Panzer IV/70 (A). While intended to be easily constructed, by the end of the war only 278 were actually built

While the Panzer IV/70 (A) used a modified superstructure of the Panzer IV/70 (V), visually they were very different. Source: http://www.panzernet.net/panzernet/stranky/stihace/jgdpz4.php

Production

The production of the Jagdpanzer IV was meant to commence with the first 10 vehicles in September 1943. The planned production numbers were then meant to be gradually increased by 10 more vehicles each month. The estimated serial production for 1943 was to be 10 in September, 20 in October, 30 in November and 40 in December.

However, due to many delays, mostly due to the poor quality of the supplied armored superstructures by Witkowitz and the lack of gun mounts, only 10 vehicles were completed in December 1943. By the end of January 1944, only 30 were completed and issued to the German Army. From May 1944, Vomag stopped producing the Panzer IV tank and concentrated on the production of the Jagdpanzer IV vehicle instead. By the time the production of the Jagdpanzer IV stopped in November 1944, some 750 vehicles had been built by Vomag. Monthly production (besides the first 30 vehicles) was 45 in February, 75 in March, 106 in April, 90 in May, 120 in June, 125 in July, 92 in August, 19 in September, 46 in October and the last two in November 1944. The sudden drop in numbers in September was due to the Allied bombing of the Vomag factory.

A column of brand new Jagdpanzer IVs. Source: https://warspot.ru/11786-luchshiy-stug

Of course, like many other German vehicles, the exact production numbers are different depending on the author. The previously mentioned numbers are according to T.L. Jentz and H.L. Doyle (Panzer Tracts No. 9-2 Jagdpanzer IV). Author T. J Gander (Tanks in Detail: JgdPz IV, V, VI and Hetzer), gives a number of 769 build vehicles. This number is confirmed by P. Chamberlain (Encyclopedia of German Tanks of World War Two – Revised Edition), who also states that 26 more chassis were also built. Authors K. Mucha and G. Parada (Jagdpanzer IV L/48), give an estimation of 769 to 784 of produced vehicles. Author P. Thomas (Images of war: Hitler’s Tank Destroyers) mentions that some 800 were built.

Organization

The Jagdpanzer IV was used to equip Panzerjäger Abteilungen of Panzer and Panzer Grenadier Divisions. The Panzerjäger Abteilungen that were assigned to Panzer Divisions had two companies with 10 vehicles each and another vehicle for the commander of the unit. The Panzer Grenadier Panzerjäger Abteilungen were larger, with 14 vehicles in each company and three command vehicles. Of course, depending on the availability and combat situation, the number of given vehicles per Panzerjäger Abteilungen was sometimes below or above the official nominal strength of the unit. For example, the Panzer Lehr Abteilung had around 31 vehicles.

In Combat

The Jagdpanzer IV had all the characteristics needed to be an excellent tank hunter (good speed, armor protection, firepower, small size). It would see action on nearly all fronts the German Army fought on at the time, in the East, in the West and on the Italian front.

During the Allied landings in Normandy in June 1944, there were only 62 Jagdpanzer ready for operational service. These were allocated to the Panzer Lehr Division (31), 2nd Panzer Division (21) and the last 10 to the 12th SS Panzer Division. The Panzer Lehr Division was actually the first German unit to be equipped with these vehicles. The 12th SS Panzer Division was to be equipped with 11 additional vehicles, but these did not reach the front until 22nd June. The fighting in France was taking a heavy toll on the few Jagdpanzer IV and, for example, by 1st July, the Panzer Lehr Division still had 28 vehicles, but only 9 were fully operational. While Jagdpanzer IV saw extensive service during the Liberation of France, their impact was minimal due to the small numbers available. In the following months, six more divisions had Abteilungen equipped with Jagdpanzer IVs (17th SS Panzer Grenadier Division, 9th, 11th and 116th Panzer Divisions and the 10th SS Panzer Division).

During the Ardennes Offensive in December 1944, there were some 92 Jagdpanzer IV ready for action. Maybe the best known Jagdpanzer IV ace was SS Oberscharfuhrer Roy, who managed to destroy around 36 enemy tanks from D-Day until he was killed in late December 1944 during the Battle of the Bulge.

In Italy, there were 83 Jagdpanzer IV within the German armored formations. The first unit to use the Jagdpanzer IV in combat there was the Fallschirm Panzer Division ‘Hermann Göring’. In April 1944, ‘Hermann Göring’ was equipped with 21 vehicles. The 3rd and the 15th Panzer Grenadier Divisions were equipped with 31 vehicles each.

The majority of the produced Jagdpanzer IVs were deployed on the Eastern Front in an attempt to stop the Soviet advance. They saw heavy action there, but also be used in the role of tanks or assault guns, roles for which it was not designed for. For example, while attacking Soviet lines at Homok (Hungary) on the 19th December 1944, the Panzerjäger Abteilung 43 lost three out of four Jagdpanzer IV.

By the end of 1944, there were some 311 (209 operational) Jagdpanzer IVs on the Eastern Front, 87 (59 operational) on the Western Front and only 8 (6 operational) on the Italian Front.

Abandoned or destroyed Jagdpanzer IV. While Schürzen covers could be provided for extra protection from AT rifles, this vehicle lacks them, probably lost during combat operations. Source: http://www.warlordgames.com/head-to-head-jagdpanzer-iv-l48-vs-m10-tank-destroyer/
This is one of the last built Jagdpanzer IV vehicles belonging to the 11th Panzer Division. Source: https://warspot.ru/11786-luchshiy-stug

After the War

Strangely, the Jagdpanzer IV would see limited combat action after the war. Around five vehicles were given to Syria in 1950 by the French, though depending on the sources, it is possible that the Soviets supplied them with these vehicles. During the combat with the Israeli forces in 1967 during the 6 Days War, one Jagdpanzer IV was lost when it was hit by a tank round. The remaining were withdrawn from the front and probably placed in reserve or even stored. These Jagdpanzers IV were still listed in the Syrian army inventory during 1990-1991. What became of them is, unfortunately, it is not known.

A few Jagdpanzer IV were supplied to Syria and used against Israeli forces. Source: Unknown

As Bulgaria was part of the Axis alliance during World War II, it was supplied with German equipment, including some StuG III, Panzer III and IV and small numbers of Jagdpanzer IV’s. During the Cold War (Bulgaria was now part of the Eastern Communist Bloc) in order to protect its border with Turkey, the older German supplied armored vehicles were used as static bunkers including the Jagdpanzer IV. After the collapse of the Soviet Union these vehicles were abandoned by the Bulgarian army. They would remain there until 2007 when the Bulgarian army made extensive recovering operation in order to salvage these vehicles. One of the salvaged vehicles was a Jagdpanzer IV.

The wrecks recovered by the Bulgarian Army can be seen on this video.

Surviving Vehicles

Today, several vehicles have survived the war around the world. One Jagdanzer IV can be found in the Bulgarian Museum of Glory in Yambol. There were three vehicles, including one of the 0-series located in France, at the Saumur Armor Museum. The 0-series vehicle was given to Germany and can be seen in the Panzermuseum Munster together with another Jagdpanzer IV that was already there. One more can be seen in Switzerland at the Panzermuseum Thun. There is also one located in Syria.

The surviving 0-series Jagdpanzer initially located in France. Source: Wikimedia Commons
The second Jagdpanzer IV in the Panzermuseum Munster. Source: Wikimedia Commons
The Jagdpanzer IV located in the French Saumur Armor Museum. Source:http://tank-photographs.s3-website-eu-west-1.amazonaws.com/jagdpanzer-IV-ausf-f-sdkfz162-tank-destroyer.html
The Jagdpanzer IV located in Switzerland at the Panzermuseum Thun.Source: http://preservedtanks.com/Types.aspx?TypeCategoryId=105&Select=1

Conclusion

The Jagdpanzer IV was initially designed to replace the mass-produced StuG III. This was never implemented and, instead of Sturmartillerie units, it was allocated to Panzer units. In general, the Jagdpanzer IV had more or less the same operational combat characteristics as the StuG III. Both had the same gun, but the Jagdpanzer IV had a more effective and much simpler armor design. While an effective tank destroyer, it could be considered a waste of time and resources as the Panzer IV was already in production, had the same gun but mounted in a turret, increasing its effectiveness. The Jagdpanzer IV was draining significant and necessary resources needed for the Panzer IV production. It was built too late and in too few numbers to really have any impact on the whole war.


Early production Jagdpanzer IV/48, 1944.
Early production Jagdpanzer IV.
Jagdpanzer IV, Kampfgruppe Von Luck.
Jagdpanzer IV, Kampfgruppe Von Luck, Normandy, June 1944.
Jagdpanzer IV lost in France in 1944 and photographed by Sergeant Walther Shrek of the 3rd Armored Division.
Jagdpanzer IV lost in France in 1944 and photographed by Sergeant Walther Shrek of the 3rd Armored Division.
Captured Russian Jagdpanzer IV, 3rd Ukrainian Front.
Captured Russian Jagdpanzer IV, 3rd Ukrainian Front, Hungary, March 1945.
Jagdpanzer IV L/48, Germany, April 1945.
Jagdpanzer IV L/48, Germany, April 1945.
Jagdpanzer IV L/48 in winter camouflage, 53rd Panzerjäger Abt
Jagdpanzer IV L/48 in winter camouflage, 53rd Panzerjäger Abteilung, 5th Panzer Division, East Prussia, January 1945.
Jagdpanzer IV, 3rd SS Panzerjäger Abteilung, 3rd SS Panzer Division
Jagdpanzer IV L/48, 3rd SS Panzerjäger Abteilung, 3rd SS Panzer Division, Hungary, March 1945.

Specifications

Dimensions (L-W-H) 6.85 x 3.17 x 1.86 m
Total weight, battle-ready 24 tonnes
Crew 4 (driver, commander, gunner, loader)
Propulsion Maybach HL 120 TRM, 272 hp @ 2800 rpm
Speed 40 km/h (25 mph), 15-18 km/h (cross country)
Operational range 210 km, 130 km (cross country)
Traverse 15° right and 12° left
Elevation -8° to +15°
Armament 7.5 cm (2.95 in) Pak 39 L/48 (79 rounds)
7.9 mm (0.31 in) MG 42, 1200 rounds
Superstructure armor Front 60 mm, sides 40 mm, rear 30 mm and top 20 mm

Source

D. Nešić, (2008), Naoružanje Drugog Svetsko Rata-Nemačka, Beograd
P. Chamberlain and H. Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
P. Chamberlain and T.J. Gander (2005) Enzyklopadie Deutscher waffen 1939-1945 Handwaffen, Artilleries, Beutewaffen, Sonderwaffen, Motor buch Verlag.
A. Lüdeke (2007) Waffentechnik im Zweiten Weltkrieg, Parragon books.
H. Doyle (2005). German Military Vehicles, Krause Publications.
P. Thomas (2017), Hitler’s Tank Destroyers 1940-45. Pen and Sword Military.
T.L. Jentz and H.L. Doyle (2012) Panzer Tracts No.9-2 Jagdpanzer IV,
T.L. Jentz and H.L. Doyle (1997) Panzer Tracts No.9 Jagdpanzer,
T. J. Gander (2004), Tanks in Detail JgdPz IV, V, VI and Hetzer, Ian Allan Publishing
Walter J. Spielberger (1993). Panzer IV and its Variants, Schiffer Publishing Ltd.
B. Perrett (1999) Sturmartillerie and Panzerjager 1939-1945, New Vanguard
P. Paolo (2009) Panzer Divisions 1944-1945, Osprey Publishing
N. Szamveber (2013) Days of Battle Armoured Operations North Of The River Danube, Hungary 1944-45, Helion & Company
J. Ledwoch (2009) Bulgaria 1945-1955, Militaria.
wwiiafterwwii.wordpress.com
www.warhistoryonline.com

Germans Tanks of ww2
Germans Tanks of ww2

Categories
WW2 German Tank Destroyers

Panzer IV/70 (A)

Nazi Germany (1944)
Tank Destroyer – 278 Built

The Panzer IV/70 (A) was born from earlier German attempts to place the 7.5 cm L/70 into a Panzer IV turret. As this was not possible, another solution was proposed by the firm of Alkett. Their design simply reused a modified Vomag Panzer IV/70 (V) superstructure (armed with the 7.5 cm L/70 gun) and placed it on a standard Panzer IV tank chassis. The result was a much taller and heavier vehicle than the Panzer IV/70 (V) version. In theory, this would have sped up the whole production process, but in reality, only a small number were built by the end of the war.

Panzer IV/70 (A) lost during the battle for Colmar Pocket in February 1945. Source: www.panzernet.net

First Jagdpanzer Designs

Even before the war, the famous German commander General Heinz Guderian had predicted the need for highly mobile self-propelled anti-tank vehicles, later known as ‘Panzerjäger’ or ‘Jagdpanzer’ (tank destroyer or hunter). The terms ‘Jagdpanzer’ and ‘Panzerjäger’ were, according to Germany military terminology and concepts, essentially one and the same. After the war, however, the ‘Jagdpanzer’ term would be used to describe the fully enclosed tank destroyers, while ‘Panzerjäger’ would be used for the open-topped vehicles.

In March of 1940, the first attempt to build such a vehicle was made. This was the 4.7 cm PaK (t) (Sfl) auf Pz.Kpfw. I, generally known today as the ‘Panzerjäger I’. It was more or less a simple improvisation, made by using a modified Panzer I Ausf.B tank hull and mounting a 4.7 cm PaK (t) gun (a captured Czechoslavkian 4.7 cm gun – hence the ‘t’ for ‘Tschechoslowakei’ after the name) with a small protective shield fitted to it. Later, during the attack on the Soviet Union and the battles in North Africa, the need for effective anti-tank vehicles became of greater importance for the Germans. The appearance of the towed 7.5 cm PaK 40 in increasing numbers somewhat solved this problem, but the main issue with this gun was its lack of mobility.

The need for mobile anti-tank vehicles would lead to the development of the ‘Marder’ series, which was based on several different tank chassis and armed with powerful and efficient anti-tank guns. Captured tanks and other vehicles were also reused for this purpose. In 1944, the Nashorn, armed with the excellent 88 mm Pak 43, was put into production. However, most of these types of vehicles were hastily designed and built and, while they did the job, they were far from perfect.

These vehicles were built by using different tank chassis and installing a gun with limited traverse in an open-topped superstructure. The two main issues were the great height, which made them difficult to camouflage, and the general lack of effective armor.

The German infantry support self-propelled assault gun, the Sturmgeschütz, or simply ‘StuG’, (based on the Panzer III) proved to have great potential when used as a tank hunter. It had relatively good armor, a low profile, and could be armed with the longer barrelled L/48 7.5 cm gun. The mass-produced StuG III Ausf.G armed with the longer 7.5 cm gun (L/48) was able to efficiently fight almost all Allied tanks (except for the heaviest) up to the end of the war. The StuG vehicles were also much easier, quicker, and cheaper to build than their tank equivalent.

In 1942, the first plans to equip the StuG with a stronger gun and armor were made. These would eventually lead to the development of a series of three different Jagdpanzer designs based on the Panzer IV tank chassis. Despite the initials plans to equip the first Jagdpanzer IV with the longer 7.5 cm L/70 gun, due to insufficient stocks, the 7.5 cm gun L/48 had to be used instead. When the 7.5 cm L/70 gun became available in sufficient numbers, the production of the Panzer IV/70 (V) version began in late 1944. The last version, known as Panzer IV/70 (A), was an attempt to mount the 7.5 cm L/70 on an unmodified Panzer IV tank chassis.

History

In mid-1944, the German Herres Waffenamt (army ordnance department) personnel conducted a series of investigation to test the Panzer IV’s combat performance. The results were disappointing but, in a way, also somewhat to be expected. The newest enemy tank designs (like the Soviet IS-2 and T-34-85, and the later version or Shermans, M26, etc.) possessed far better combat characteristics, like having stronger armor or firepower than the Panzer IV. While still a threat to the enemy tanks, the Panzer IV was reaching the limit of its development life. Its 7.5 cm L/48 gun was still a potent weapon for its time, however, a stronger gun with much better firepower was more desirable. This was one of the reasons why Adolf Hitler demanded that the production of the Panzer IV tanks should be phased out in favor of the new Panzer IV/70 (V) anti-tank vehicles. As the production of the Panzer IV/70 (V) was too slow and there were urgent demands for increasing numbers of tanks, another solution to use the 7.5 cm L/70 on a Panzer IV vehicle was needed. For this reason, the Alkett factory received orders from the German Army in late June 1944 to test the installation of the 7.5 cm L/70 long gun on the Panzer IV chassis.

Armor penetration table: Source: I. Hogg. (German artillery of world war two). And T.L. Jentz (Germany’s Panther Tank)
The 7.5 cm PaK 42 L/70 Armor penetration (maximum range) table against enemy tanks. Source: T.L. Jentz (Germany’s Panther Tank)

The installation of this gun in the Panzer IV turret had already been tested previous year and proved to be impractical, so the only way to mount this gun was in a self-propelled configuration. Due to a lack of time, resources, and production capacities, Alkett engineers proposed a very simple solution. A redesigned superstructure taken from the Panzer IV/70 (V) would be placed on an unmodified Panzer IV chassis. This would increase the vehicle weight and height but, on the other hand, it would make production far simpler (at least in theory). This project was designated by Alkett as ‘Gerät 558’. It is often marked in post-war sources as Zwischenlösung (interim solution), but this term was never used by the Germans for this vehicles during the war.

This project received a green light from the German Army officials and the first prototype (made by Alkett) was quickly built. It was demonstrated to Adolf Hitler in early July 1944 at Berghof. Hitler was impressed with it and immediately ordered it to be put into production as soon as possible.

Hitler inspects the new Panzer IV/70 (A) prototype vehicle in early July 1944. Source: warspot.ru
Side view of the Panzer IV/70 (A) prototype. Source: firearmcentral.fandom.com

Designation Name

The initial designation for this vehicle was ‘Sturmgeschütz auf Pz.Kpfw.IV Fahrgestell’. This designation was changed by Adolf Hitler himself on 18th July 1944 to the much simpler Panzer IV lang (long) (A). The capital ‘A’ stood for the Alkett company that was responsible for its development. During its service life, other designations were also used, like Panzer IV/L (A) from August 1944, Panzer IV lang (A) 7.5 cm PaK 42 L/70 from October 1944 and finally Panzer IV/70 (A) from November 1944. The Panzer IV/70 (A) designation is the most commonly used in the literature today. For this reason and for the sake of simplicity, this article will use this designation.

Technical Characteristics

The Panzer IV/70 (A) was designed to have minimal modifications to the Panzer IV Ausf. J tank chassis. For this reason, the turret and the top of the hull were removed and, in their place, a new superstructure housing the gun was added on top. Visually, the Panzer IV/70(A) was different in comparison to the other Jagpanzers based on the Panzer IV. The most obvious difference is the overall shape of the new superstructure added atop the Panzer IV hull.

The suspension and running gear were the same as those of the original Panzer IV, with no changes to their construction. This consisted, on each side, of eight small double road wheels suspended in four pairs by leaf-spring units. There were two front drive sprockets, two rear idlers, and eight return rollers in total. The number of return rollers was reduced to three per side later in the production run. However, despite this, some late produced vehicles still had four return rollers. Similar to the Panzer IV/70 (V) model, this vehicle was also nose-heavy due to the added weight. For this reason, the front road wheels were prone to being rapidly worn out. In an attempt to solve this problem, most vehicles were to be equipped with four (on both sides) steel-tired and internally sprung wheels from September 1944 onwards.

The engine was the Maybach HL 120 TRM which produced 265 hp at 2,600 rpm but, according to T.L. Jentz and H.L. Doyle (2012) in Panzer Tracts No.9-2 Jagdpanzer IV, the engine produced 272 hp at 2,800 rpm. The design of the engine compartment was unchanged. The maximum speed was 37 km/h (15-18 km/h cross country) with an operational range (with 470 liters fuel) of 200 km. These vehicles were fitted with new flame dampening exhausts and mufflers (flammentoeter). The engine and the crew compartments were separated by a fire-resistant and gas-tight armored firewall.

In order to speed up the development process and make the production as simple as possible, the Alkett engineers decided to reuse many elements from the already existing Panzer IV/70 (V) superstructure. While similar in many things (like armor thickness, roof design, gun shield etc.) there were a number of changes that had to be done before the adoption for production. The first thing was the increase in height of the superstructure, which was now 1 m tall in comparison to the original Panzer IV/70 (V), which was 64 cm tall. The side armor angles had to be lower and the added frontal plate had the original Panzer IV driver visor placed on the vehicle left side. The prototype vehicle had a slightly different superstructure design with vertical lower superstructure sides. The production models had the sides angled at 20°.

The Panzer IV/70 (V) superstructure had to be redesigned for two reasons. Firstly, the Panzer IV’s fuel tanks were located beneath the turret. This meant that the installation of the long gun required the raising of the superstructure. The second reason was a problem noted on the Panzer IV/70 (V), namely that, when on the move on rough terrain, the longer gun (if not held in position by the travel lock) occasionally hit the ground (barrel strike) which could cause damage to the elevation mechanism of the gun.

Despite the extra height, the Panzer IV/70 (A)’s superstructure was well protected with its angled and thick armor and had a relatively simple design. The angled shape of the superstructure provided thicker nominal armor and also increased the chance of deflecting enemy shots. This way, the need for more carefully machined armored plates was unnecessary. Also, by using larger one-piece metal plates, the structure avoided, a lot of welding making it much stronger and also easier for production.

A table showing the thickness of the armor of the Panzer IV/70 (A), StuG IV and the Panzer IV Ausf.J vehicles. 1: The second number is for the driver plate armor. 2: The second number is for the engine compartment. 3: Same as previous. Source: Panzer Tracts No.9-2 Jagdpanzer IV, No.4 Panzerkampfwagen IV and Panzer Tracts No.8 Sturmgeschütz
The prototype vehicle had a slightly different superstructure design with vertical lower superstructure sides. The production models had the sides angled at 20°. In addition, the MG 42’s conical-shaped cover was different on the production vehicle. Source: warspot.ru
The production version had angled side armor and a different machine gun armored cover. Source: Pinterest

The Panzer IV/70 (A)’s upper front hull armor plate was 80 mm thick. The side armor was 30 mm, the rear 20 mm and the bottom was 10 mm. The engine compartment design and armor were unchanged, with 20 mm all around and 10 mm of top armor. The upper superstructure frontal armor was 80 mm at a 50° angle, the sides were 40 mm at a 19° angle, the rear armor was 30 mm, and the top was 20 mm. The front driver plate was 80 mm thick and placed at a 9° angle.

The Panzer IV/70 (A) could be equipped with an additional 5 mm thick armor plates (Schürzen) covering the sides of the vehicle. In practice though, these would rarely last long and would simply fall off the vehicle during combat operations. Due to material shortages, by late 1944, stiff wire mesh panels (Thoma Schürzen) were used instead of the armor plates. These were much lighter and most sources claim that they provided the same level of protection as the solid type. It is often mentioned that Schürzen were designed as a protection against shape-charged weapons, but they were actually designed to counter Soviet anti-tank rifle projectiles. One more line of protection was the possible application of Zimmerit anti-magnetic paste to counter magnetic anti-tank mines, but the use of this paste would be abandoned in the late stages of the war.

In the hope of removing any extra weight at the front, most spare parts and ancillary equipment were moved to the rear engine compartment. These included things such as spare tracks, wheels, repair tools, the fire extinguisher, and the crew’s equipment. Some vehicles had an armored and welded base for a 2-tonne crane added on the superstructure roof.

Armament

The Panzer IV/70 (A) tank destroyer’s main armament was the 7.5 cm StuK 42 L/70 cannon, also known as the 7.5 cm PaK 42 L/70. This gun was more or less the same one used on the German Panther tank. The elevation of the 7.5 cm StuK 42 L/70 was from –6° to +15° and the traverse was 12° on both sides. Due to the increased internal size, the Panzer IV/70 (A) could carry more spare ammunition than its predecessors. Older sources noted that the total ammunition count was 60 rounds, while newer ones give a number of 90 rounds. The main gun was not placed at the vehicle’s center but was instead moved 20 cm to the right side because of the position of the gun sights

The 80 mm thick cast gun mantlet acted as extra protection for the gun. A hydro-pneumatic equilibrator was provided for better gun balance and an iron counter-weight was added at the end of the recoil guard. To avoid damaging the main gun when on the move, a heavy travel-lock was provided. In order to free the gun, the gun operator had only to elevate the gun a bit and the travel lock would fall down. This allowed for a quick combat response and also avoided the need for a crew member to exit the vehicle in order to do it manually.

The secondary support weapons consisted of a 7.92 mm MG 42 machine gun with some 1,200 rounds of ammunition, a 9 mm MP 40 submachine gun and a 7.92 mm MP 43/44 assault rifle. Unlike most other German vehicles, a ball mount was not used on this vehicle. The machine gun port was instead protected by a movable armored cover. The machine gun mount was located to the vehicle’s right side. The Panzer IV/70 (A) vehicles were usually equipped with the ‘Vorsatz P’ curved muzzle attachment for the MP 43/44 (7.92 mm) assault rifles. The mounting for this weapon was placed on the loader’s hatch door and was operated by him.

Rearview of the Panzer IV/70 (A). Several interesting details can be observed, such as the two rear flame dampening exhausts, the track links added to the side of the superstructure that were used as spare parts and extra armor, the ‘Vorsatz P’ curved muzzle on the top right side and the Thoma Schürzen. Source: warspot.ru
Here we can observe the Panzer IV/70 (A)’s MG 42 machine gun. Its movable armored cover is missing on this vehicle. Source: unknown

Crew

The four-man crew consisted of the commander, the gunner, the loader/radio operator, and the driver. The driver’s position was on the vehicle’s left front side. Behind him was the gunner’s position, which was provided with an Sfl.Z.F. 1a gun sight for acquiring targets. This sight was linked to an azimuth indicator, the purpose of which was to tell the gunner the precise current position of the gun. When in use, the sight was projected through the sliding armored cover on the vehicle’s top armor. For operating the gun, there were two handwheels. The lower wheel was for the traverse and the upper one for the elevation. The gunner was also provided with a recoil shield, while the loader was not. Behind these two was the commander’s position, which had a rotating periscope located in the escape hatch and one pointing to the left. The commander had a small additional hatch door for the use of a retractable Sfl.4Z telescope. The commander was also responsible for providing the loader with the ammunition located on the left sidewall. The last crew member was the loader, who was positioned on the vehicle’s right side. He operated the radio (Fu 5 radio set) which was located to the right rear and he also doubled as the MG 42 machine gun operator. There was a small opening located above the machine gun which provided the gun operator with a limited view of the front. When not in use, the machine gun could be pulled into a small travel lock which was connected to the vehicle’s roof. In that case, the machine gun port could be closed by pivoting the armor cover. The crew could enter the vehicle through two hatches located at the top of the vehicle. There was an additional floor escape hatch door that could be used in case of an emergency.

Production

By the orders of Adolf Hitler himself, the production of the Panzer IV/70 (A) was to begin immediately, with an initial order of 350 vehicles. The first 50 were to be built in August 1944, 100 in September, and then 50 vehicles each month until February 1945. However, for unknown reasons, these production orders were never fully implemented by the Waffenamt. The Waffenamt instead issued, on 21st June 1944, new production orders for 50 vehicles in August, 100 in September, 150 in October, 200 in November, 250 in December, and the last 300 in January. Yet very shortly thereafter, new production orders were issued for 50 in August, 100 in September, 150 in October and November, and only 100 December. In early August 1944, the production orders were once again changed to 50 in August, followed by a monthly production of 100 vehicles from October to January 1945. The last changes to the production occurred by the end of January 1945, when the monthly production was to be around 60 vehicles with the last 8 in June.

In the end, these production numbers were never reached due to the chaotic state in Germany in late 1944. Constant changes in the production orders also lead to confusion and delays in production. Besides the prototype, only 277 vehicles were ever built by Nibelungenwerk from Austria, with a monthly production of 3 in August 1944, 60 in September, 43 in October, 25 in November, 75 in December, 50 in January 1945, 20 in February, and the last one in March 1945.

In Combat

The Panzer IV/70 (A) was to be allocated to units equipped with ordinary Panzer IV tanks, with the intent of increasing their firepower at longer ranges. According to initials plans, the first group of 68 vehicles was to be transported to the Eastern Front and then distributed to Panzer IV equipped units. As only five vehicles were actually ready by September 1944, these were instead given to the Führer Begleit Brigade together with a group of 17 Panzer IV tanks. The second group of 17 vehicles was to be dispatched to the Eastern Front, but it actually arrived in mid-October 1944. By the end of October, units that received the Panzer IV/70 (A) were the 3rd Panzer Division, 17th Panzer Division and 25th Panzer Division, which had 17 vehicles each, while the 24th Panzer Division had 13, and the 13th Panzer Division had only 4 vehicles.

In response to the invasion in the West, in late 1944, two Abteilung with 45 vehicles each were formed and attached to the Panzer Regiment Grossdeutschland and the 2nd Panzer Regiment. The Panzer IV/70 (A) Abteilung should have had 45 vehicles divided into three companies, each equipped with 14 vehicles, with three additional in the Command Abteilung. These two units were never fully formed due to the general lack of Panzer IV/70 (A) vehicles. The 2nd Panzer Regiment was supplied with 11 and Grossdeutschland with 38 Panzer IV/70 (A) vehicles.

By the end of 1944, Panzer Abteilung 208 was formed. It was supplied with 14 Panzer IV/70 (A) and 31 Panzer IV tanks. It was organized in three companies, one of which was fully equipped with the Panzer IV/70 (A). At this time, 10 Panzer IV/70 (A) were also allocated to the 7th Panzer Division. In January 1945, the last Panzer units to receive 14 Panzer IV/70 (A) vehicles were the 24th Panzer Division and the Panzer Brigade 103.

From January 1945 onwards, the Panzer IV/70 (A) were allocated to Sturmgeschütz units only, mainly in the hope of increasing their firepower against enemy armored vehicles. Around thirteen Sturmgeschuetz Brigades (Stu.G.Brig.) were equipped with 3 vehicles each (for example 341, 394, 190, 276 etc.), while fewer (210, 244, 300 and 311) had four vehicles. Only two Stu.G.Brig. received larger numbers. The Sturm Artillerie Lehr Brigade 111 had 16 vehicles and the Stu.G.Brig. Grossdeutschland had 31.

Thanks to its thick front armor and strong gun, the Panzer IV/70 (A) could be an effective weapon. An example of this comes from Stu.G.Brig. 311. During a Soviet attack on Breslau (mid-April 1945), Stu.G.Brig. 311, three StuG III and one Panzer IV/70 (A) managed to destroy around 10 ISU-152 vehicles. The next day, Stu.G.Brig. 311 again engaged the Soviet armored advance. On this occasion, the Soviets lost 25 armored vehicles, of which 13 were reported to be destroyed by the lone Panzer IV/70 (A). It is unclear if these values and those following are just claimed kills or verified kills.

Another example comes from Panzer Abteilung 208, which was heavily engaged in Hungary from early January 1945 on. On the 1st day of 1945, Panzer-Abteilung 208’s combat strength was 25 Panzer IV (with 21 combat-ready) and 10 Panzer IV/70 (A) (with 7 fully operational). During the heavy Soviet assault (8th January) on the German position around village Izsa (located in Slovakia near the Hungarian border), Panzer Abteilung 208 managed to destroy 24 enemy tanks, of which 7 were credited to the Panzer IV/70 (A), with the loss of three Panzer IV and one Panzer IV/70 (A). The next day, four more Soviet tanks were destroyed, followed by seven more (five were reported to be destroyed by the Panzer IV/70 (A) in the Panzer Abteilung 208’s counter-attack). On 17th January, 11 more Soviet tanks were destroyed by Panzer Abteilung 208, of which four by the Panzer IV/70 (A) near Szentjánospuszta. On 22nd January, Panzer Abteilung 208, with a force of 25 Panzers and Panzer IV/70 (A), made a counter-attack against the Soviet 6th Guards Tank Army, where the enemy lost nine tanks. Panzer Abteilung 208 lost most of its equipment during the failed attack on Kéménd on 19th February 1945. Of course, there is always a chance that in both cases these numbers were exaggerated for propaganda purposes.

The few produced Panzer IV/70 (A) that did reach the front line were simply overrun by the vast numbers of enemy tanks. Most were simply abandoned or destroyed by their crew due to the general lack of fuel and spare parts. The German army was not overly satisfied with the Panzer IV/70 (A)’s performance. In a report made on 15th January 1945 by the Generalinspekteur der Panzer truppen (Inspector General for Panzer units), the Panzer IV/70 (A) was deemed as ‘not combat serviceable’ and that the Panzer IV tank production should be increased.

While the majority of produced Panzer IV/70 (A) were used on the Eastern front, smaller numbers were also present in the West. This vehicle was captured by the Allies somewhere in the West in early 1945. Source: www.panzernet.net
While a potent tank-destroyer, most were lost due to mechanical failures and a general lack of fuel. Source: Pinterest
Front view of a destroyed Panzer IV/70 (A). Source:forums.armchairgeneral.com

Surviving vehicle

Today, only one Panzer IV/70 (A) (serial number 120539) is known to have survived the war and can be found at the French Musée des Blindes at Saumur. It was hit and damaged by Sherman tank fire at close range, but was still in running condition when it was captured by the French resistance army.

The only surviving Panzer IV/70 (A) located at the Musée des Blindes at Saumur. Source: Wiki

Conclusion

While the Panzer IV/70 (A) had the potential to be an effective anti-tank weapon thanks to its good firepower and strong frontal armor, it was built in too few numbers. Another problem was weight distribution and the increase of height which made it difficult to camouflage. This made them easier targets for enemy gunners. The introduction of yet another design put even more stress on the already desperate German industry.

In the end, the Panzer IV/70 (A) did not influence on the course of the war, as it was built in small numbers and too late, but it was nevertheless a potent tank destroyer.



Illustration of the Panzer IV/70 (A), produced by Tank Encyclopedia’s own David Bocquelet

Jagdpanzer IV/70(A), Sd.Kfz.162/1 Zwischenlösung
Jagdpanzer IV/70(A) used in support of the 352nd Volksgrenadier division, Ardennes, 1944.

Jagdpanzer IV/70(A) from the 116th Panzer Division
Jagdpanzer IV/70(A) from the 116th Panzer Division, Compogne, Belgium, fall 1944.

Specifications

Dimensions (L-W-H) 8.87 x 2.9 x 2.2 meters
Total weight, battle ready 28 tonnes
Armament 7.5cm PaK 42 L/70 and one 7.92 mm MG 42
Armor Hull front 80 mm, side 30 mm, rear 20 mm and bottom 10-20 mm
Superstructure front 80 mm, side 40 mm top and rear 20 mm
Crew 4 (driver, commander, gunner, loader)
Propulsion Maybach HL 120 TRM, 300 hp (221 kW), 11.63 hp/ton
Speed 37 km/h, 15-18 km/h (cross country)
Suspension Leaf springs
Operational range 200 km, 130 km (cross country)
Total production 278

Sources

D. Nešić, (2008), Naoružanje Drugog Svetsko Rata-Nemačka, Beograd
P. Chamberlain and H. Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
P. Chamberlain and T.J. Gander (2005) Enzyklopadie Deutscher waffen 1939-1945 Handwaffen, Artilleries, Beutewaffen, Sonderwaffen, Motor buch Verlag.
A. Lüdeke (2007) Waffentechnik im Zweiten Weltkrieg, Parragon books.
D. Doyle (2005). German military Vehicles, Krause Publications.
P. Thomas (2017), Hitler’s Tank Destroyers 1940-45. Pen and Sword Military.
T.L. Jentz and H.L. Doyle (2012) Panzer Tracts No.9-2 Jagdpanzer IV,
T.L. Jentz and H.L. Doyle (1997) Panzer Tracts No.9 Jagdpanzer,
T.L. Jentz and H.L. Doyle (1997) Panzer Tracts No.4 Panzerkampfwagen IV
T.L. Jentz and H.L. Doyle (2000) Panzer Tracts No.8 Sturmgeschuetz
J. Ledwoch (2002) Panzer IV/70, Militaria.
T. J. Gander (2004), Tanks in Detail JgdPz IV, V, VI and Hetzer, Ian Allan Publishing
Walter J. Spielberger (1993). Panzer IV and its Variants, Schiffer Publishing Ltd.
N. Szamveber (2013) Days of Battle Armoured Operations North Of The River Danube, Hungary 1944-45, Helion & Company
I. Hogg. (1975) German artillery of world war two, Putnell Book.
T.L. Jentz (1995) Germany’s Panther Tank, Schiffer Military History


Categories
WW2 German Tank Destroyers

4,7 cm PaK (t) (Sfl) auf Pz.Kpfw.I (Sd.Kfz.101) ohne Turm, Panzerjäger I

Nazi Germany (1940)
Tank Destroyer – 202 Built

Even before the Second World War, the famous German tank commander, Heinz Guderian, had predicted the need for highly mobile self-propelled anti-tank vehicles, later known as Panzerjäger or Jagdpanzer (tank destroyer or hunter). In March 1940, the first attempt to build such a vehicle was made. This was the 4.7 cm PaK (t) (Sfl) auf Pz.Kpfw. I ohne turm. It was more or less a simple improvisation, made by using a modified Panzer I Ausf.B tank hull and by mounting a 4.7 cm PaK (t) gun with a small shield on it. This vehicle proved to be an effective anti-tank weapon in the early period of the war, with a few examples remaining in service up to 1943.

Birth of the First Panzerjäger

During the German invasion of Poland in September 1939, the 3.7 cm PaK 36 was the main anti-tank gun in use by the Wehrmacht. This gun proved to be effective against Polish tanks and other armored vehicles, which were generally lightly armored. The PaK 36’s mobility and small size proved to have a number of advantages during combat situations, but the biggest problem was the poor penetration power. While in Poland it did the job, for the upcoming invasion of the West, a more powerful gun was desirable. The much stronger 5 cm PaK 38 was still in the development phase and it would not reach the troops in time, so another solution was needed. The Germans were lucky as, during the annexation of Czechoslovakia, they came into possession of fairly large numbers of competent 47 mm anti-guns.

Both the 37 and 47 mm guns were light and relatively easy to move around using trucks, horses or manpower, and, for infantry formations, this was not a great problem. For the Panzer units, a towed anti-tank gun was a problem due to the frequent position changes required by the rapid advance of the armored units. Wheeled trucks had great problems driving off-road. Half-tracks were more efficient in this regard, but there were never enough of them available. In a combat situation, once targets were spotted, the PaK gun had to be disconnected from the towing vehicle and moved by the crew to a designated firing position, which could take valuable and vital time. The PaK gun was also an easy target for the enemy once spotted, as it had only limited protection from the front. Mounting a sufficiently powerful PaK gun on a mobile chassis was more desirable, as it would allow the gun to follow the fast-moving units and to quickly change position to engage enemy targets.

For these reasons, after the Polish campaign, the Heereswaffenamt (ordnance department) made a proposal to mount the Czech 47 mm gun on a modified Panzer I Ausf.B. tank chassis. The choice for the tank chassis was based on the obsolescence of the Panzer I as a front line tank and the fact that it was available in sufficient numbers. The Panzer II was still considered useful and effective and the Panzer III and IV were deemed too valuable (and scarce) for such a modification. The company that was chosen to undertake this modification, was Alkett (Altmärkische Kettenfabrik) from Berlin. During late 1939 and early 1940, Alkett made the first drawings of the future Panzerjäger. Very soon, a prototype was built and tested. The conversion proved to be feasible and easy to construct. This prototype was demonstrated to Adolf Hitler himself in February 1940. After this demonstration, an official order for around 132 vehicles was given to Alkett. These vehicles had to be ready by May 1940.

Front view of a Panzerjäger I designed and built by Alkett. Photo: www.drugisvetski.com

Name

The original designation for this vehicle was 4,7 cm PaK (t) (Sfl) auf Pz.Kpfw. I (Sd.Kfz.101) ohne Turm. Nowadays, this vehicle is mostly known as the Panzerjäger I. Whilst sources do not give precise information about the origin of this designation, for the sake of simplicity, this article will use this simpler designation.

The Modifications

For the Panzerjäger I conversion, the Panzer I Ausf.B chassis was used, as it had a more powerful engine and was longer than the Ausf.A. The Panzerjäger I’s suspension and running gear were the same as those of the original Panzer I Ausf.B, with no change to its construction. It consisted of five road wheels on both sides. The first wheel used a coil spring mount with an elastic shock absorber in order to prevent any outward bending. The remaining four wheels were mounted in pairs on a suspension cradle with leaf spring units. There were two front drive sprockets, two rear idlers and eight return rollers in total (four on each side).

The main engine was the water-cooled 3.8 l Maybach NL 38 TR, giving out 100 hp at 3,000 rpm. Due to the extra equipment and larger weapon, the vehicle weight was increased to 6.4 tonnes. The added extra weight affected the crossroad performance but the maximum speed was unchanged at 40 km/h. The gearbox (ZF Aphon FG 31) had five forward and one reserve speeds.

The most obvious change was the removal of the tank turret and, in addition, the superstructure upper and rear armor were also removed. In place of the turret was a new gun mount for the 4.7 cm gun. For better stability, the gun mount was held in place by three metal bars. Two vertical bars were connected to the vehicle bottom and another larger one to the rear engine compartment. For this conversion, the gun wheels and trails were removed. In addition, the standard 4.7 cm PaK (t) gun shield was replaced with a smaller curved one. For the protection of the crew, the first series of Panzerjäger I had a five-sided armored compartment, the plates of which were 14.5 mm thick. This armored compartment was bolted to the vehicle hull, which made repairs much easier. The second series of produced vehicles had two additional (one on each side) armored plates added, which increase the directions from which the vehicle was protected. This armored compartment provided only limited protection from the front and sides due to weak armor thickness. This is one of the reasons that the crews of these vehicles used steel helmets. In a vague hope of increasing the armor protection, some crews added spare tracks to the vehicle’s front armor.

The gun used was the Skoda 47 mm Kanon P.U.V.vz.38, known as the 4.7 cm Panzerabwehrkanone 36 (t), or simply as 4.7 cm PaK (t) in German service. It was an effective weapon for its time. During the period of August 1939 to May 1941, some 566 4.7 cm PaK(t) were built by Škoda for the Germans. The standard Panzergranate Pz.Gr.36 (t) had a muzzle velocity of 775 m/s and a maximum effective ranger range of 1.5 km. The armor penetration of this round was 48-59 mm at 500 m and 41 mm at 1 km range with the standard AP round. The 4.7 cm PaK (t) could effectively destroy most tanks of the time at long distances, with the exception of the British Matilda, French B1 and later T-34 and the KV-1. In order to extend its operational effectiveness, a new Pzgr.Patr.40 tungsten round was developed (muzzle velocity was 1080 m/s). As the Germans lacked sufficient tungsten, this type of ammunition could not be produced in larger quantities and their usage was rare. The 4.7 cm PaK (t) also fired high explosive rounds (2.3 kg weight) with impact fuses to be used against light armor and infantry targets. The 47 mm gun had an elevation of -8° to +10° (or +12° depending on the source) and a traverse angle of 17.5° on each side. Elevation and traverse were controlled by two handwheels located on the gun’s left side. The main weapon monocular gunsight was not changed.

The total ammunition load was 86 rounds carried inside the vehicle in five different ammunition boxes. Only 10 HE rounds were carried, located behind the loader on the vehicle’s right side. On the right side of the crew fighting compartment, where the loader was seated, there was another ammunition box with 34 AP rounds. Some 16 AP additional rounds were placed under the gun. The remaining rounds were located at the rear fighting compartment under the gunner’s and loader’s seats.

For crew protection against infantry attack, a MP 38/40 submachine gun was provided. The ammunition for this weapon was stored on the left and right sides of the armored crew compartment. The crews could also carry additional personal weapons depending on the combat situation.

As it had no machine gun mount for an MG 34, the crew was instead provided with an MP-38/40 submachine gun, which served for limited protection from infantry attacks. Photos: www.worldwarphotos.info

Adequate radio equipment was important and, thus, the vehicles were provided with the Fu 2 receiver. A flexible antenna (1.4 m high) from the original Panzer I was located to the right of the driver. Later vehicles were equipped with a receiver and a transmitter (Funksprechgerat A) for better communication. These models had the radio antenna relocated to the vehicle’s left rear side.

The Panzerjäger I was operated by three crew members, who, due to the lack of space, had to perform more than one role. The driver, who was located inside the vehicle, was also the radio operator. The commander, who also acted as the gunner, was located on the left side of the armored compartment. The last crew member was the loader, who was located to the right side, beside the commander. To avoid being affected by harsh weather, the crew was provided with a folding tarpaulin cover.

In order to carry additional crew equipment or for used ammunition casings, a welded metal or mesh wire basket was added to the rear, above the engine compartment. Sometimes additional storage boxes were placed on the fenders or to the vehicle rear.

Panzerjager I side view. The vehicle’s relatively small height and the five-sided armored shield for crew protection are observable. Photo: www.worldwarphotos.info
A vehicle from the second production series, easily identified by the extra armor plate added to the rear. Photo: www.worldwarphotos.info

Production

The Panzerjäger I was produced in two series during the war. The first series was assembled by Alkett and production lasted from March to May 1940. The guns were to be provided by Škoda, with Krupp-Essen providing 60 armored shields. Hannover-Linder also provided an additional 72 armored shields. The monthly production for this batch of vehicles was 30 in March, 60 in April and 30 in May. Due to a lack of guns, two vehicles could not be completed. These two would be completed in September 1940 and in July 1941.

Krupp-Essen was tasked with providing 70 new armored shields for the second production series starting on 19th September 1940. However, the production orders were changed and only 10 armored shields were to be shipped to Alkett. The remaining 60 vehicles were to be assembled by Kloeckner-Humboldt-Deutz A.G.. The first 10 were completed in November, followed by 30 in December and the last 30 in February 1941. In total, 142 vehicles were assembled by Alkett and 60 by Kloeckner-Humboldt-Deutz A.G. These numbers are according to T.L. Jentz’ and H.L. Doyle’s (2010) Panzer Tracts No.7-1 Panzerjäger.

Organization

The Panzerjäger I vehicles were used to equip the Panzerjäger Abteilung (Pz.Jg.Abt) motorisierte Selbstfahrlafette, in essence anti-tank (or tank hunter) battalions using guns on self-propelled carriages. Each Pz.Jg.Abt was composed of one Stab Pz.Jg.Abt, equipped with one Pz.Kpfw.I Ausf.B, and three Kompanie (companies). These Kompanie were equipped with 9 vehicles each. The Kompanie were again divided into Zuge (platoons), each with 3 vehicles and one Sd.Kfz.10 half-track for ammunition supply.

In combat

The Panzerjäger I would see its first combat action in 1940, during the attack on the West. While the majority were prepared for the invasion of the Soviet Union, small numbers were used in the Axis occupation of the Balkans and in the North African desert.

Attack on the West, May 1940

For the upcoming invasion of France, four Pz.Jg.Abt were to be engaged, but only Pz.Jg.Abt 521 was combat-ready from the start. Pz.Jg.Abt 521 was allocated to Gruppe von Kleist prior to the beginning of the campaign on 10th May. The remaining three units, the 616th, 643rd and 670th, were gradually sent to the front once they achieved full combat readiness. These were fully equipped with 27 vehicles each, with the exception of Pz.Jg.Abt 521, which had only 18 vehicles, with 6 in each Kompanie.

The Panzerjäger I proved to be an effective weapon during the French camping. The Panzerjäger I’s strongest point was its 4.7 cm gun, which could effectively penetrate the armor of most Allied tanks from over 500 to 600 m. While it was primarily designed to attack tanks, it was often used for attacking machine gun nests or similar targets. Machine gun positions could be effectively engaged from ranges of over 1 km. In a report from the 18th Infantry Division made after the defeat of France, the effectiveness of this vehicle is clear “… The 4.7 cm PaK auf.Sfl. has proven itself to be very effective against tanks and also against houses when fighting in towns. It had a very real effect as well as a demoralizing effect on the opponent…

However, during the French campaign, numerous flaws were also noted. Despite having much better mobility than the towed anti-tank guns, the Panzer I chassis proved to be prone to malfunctions. The Panzerjäger I was often plagued with suspension problems. Another grave issue was that the engine overheated. In hotter days, in order to avoid overheating the engine, the Panzerjäger I could not be driven at a speed higher than 30 km/h with a half an hour pause every 20 to 30 km.

The lack of proper telescopic sights made the observation of the surroundings very dangerous for the crews. There were numerous instances crew members were killed by headshots while observing their surroundings from above the shielded compartment. This often forced the Panzerjäger I commander to rely on the gun sight only, which could be problematic when the vehicle was on the move. Another problem was the lack of proper communication equipment between the commander and the driver. Sometimes, due to the noise of the engine, it was almost impossible for the driver to hear the commander.

Armor protection was minimal. The Panzer I’s maximal armor was only 13 mm thick, while the combat compartment’s armored shield was a bit thicker, at 14.5 mm. This armor only provided protection from small caliber rounds and was useless even against French 25 mm anti-tank guns. Being open-topped caused other issues, as the crew could be easily killed. The limited space inside the vehicle caused additional problems, as the crew often lacked space to carry extra equipment or personal belongings. For this reason, some vehicles were equipped with a large storage box place on the right fender.

These problems would never be fully solved and would remain throughout the Panzerjäger I’s whole carrier. The poor roads in Russia and the hot climate in North Africa caused huge stress on the Panzer I tank chassis.

A row of tank destroyers in La Rochelle, France. Photo: www.worldwarphotos.info

Forming of New Units

With more vehicles being assembled in 1940 and early 1941, it was possible to form additional units. The first new unit was Pz.Jg.Abt. 169 (which was later renamed to 529). By the end of October 1940, Pz.Jg.Abt 605 was formed. Besides these, two Panzer-Jaeger-Kompanie (Panz.Jaeg.Kp) with 9 vehicles each were formed. The first, on 15th March 1941, was attached to Leibstandarte SS-Adolf Hitler. In April 1941, the second Kompanie was attached to the Lehr Brigade 900. Unknown numbers were allocated to the 4th Kompanie of the Panzerjäger Ersatz Abteilung 13, which was, in essence, a training unit at Magdeburg.

In the Balkans

For the conquest of Yugoslavia and Greece, the Panzerjäger Is from Leibstandarte SS-Adolf Hitler saw some action. However, as the opposing forces lacked any larger armored formation engagements with tanks were probably rare if any took place at all.

Operation Barbarossa

For the upcoming invasion of the Soviet Union in June 1941, five independent tank hunter battalions equipped with the Panzerjäger I were allocated to this front. These were the 521st, 529th, 616th, 643rd and 670th Pz.Jg.Abt, with a total of 135 vehicles. Pz.Jg.Abt 521 was allocated to the XXIV Mot.Korps Panzergruppe 2 H.Gr.Mitte, Pz.Jg.Abt 529 to VII. Korps 4th Armee H.Gr.Mitte, Pz.Jg.Abt 616 to Panzergruppe 4 H.Gr.Nord, Pz.Jg.Abt 643 to XXXIV Mot.Korps Panzergruppe 3 H.Gr.Mitte and Pz.Jg.Abt 670 to PanzerGruppe 1 H.Gr.Süd. There were other independent battalions (559th, 561st and 611th, for example) equipped with vehicles using the same gun but placed on the Pz.Kpfw. 35(f) tank chassis (captured in France).

Almost from the start, due to unexpected Soviet resistance, the losses among all German units began to mount. This was also the case with the independent tank hunter battalions equipped with the Panzerjäger I. For example, by late July 1941, Pz.Jg.Abt 529 lost four vehicles. By late November, the unit had only 16 vehicles (two were not operational) at its disposal.

Due to the weak armor, camouflage was essential for the vehicle’s survival. Source: Wikimedia Commons

During this campaign, the Panzerjäger I was also used to support the infantry. This was the case for Pz.Jg.Abt 521 while supporting the 3rd Panzer Division. Due to a lack of operational Soviet tanks, the Panzerjäger I were used for supporting infantry, operating similarly to the StuG III. The Panzerjäger I commanders, due to the light armor and smaller gun compared to the StuG III’s, opposed this deployment of their vehicles.

Despite their protest, the Panzerjäger Is of Pz.Jg.Abt 521 were extensively used in this role. While the 4.7 cm had an effective range of 1.5 km, the light armor of the vehicle made attacking any fortified position defended with anti-tank or artillery guns almost suicidal and lead to many losses. For example, during the attack on Soviet positions near Mogilev, Pz.Jg.Abt 521 lost 5 vehicles. Some did not even have a chance to fire at enemy positions before being destroyed. Despite its weak armor, the Panzerjäger I could be effective against enemy machine gun nest and for supporting infantry attacks if properly used and if the enemy had no artillery or other anti-tank weapons.

However, these actions were still dangerous for the crews due to the open-top nature of the vehicles. In addition, the lack of secondary support weapons, like MG-34 machine guns, meant the Panzerjäger Is were vulnerable to infantry attacks. The use of the Panzerjäger I in a support role against unarmored targets can be best described by the ammunition usage. From the start of Operation Barbarossa to the end of 1941, the Panzerjäger I units fired a total of 21,103 AP and 31,195 HE rounds of ammunition.

Engagements with enemy tanks also took place. A rather strange example comes from an action near Woronesh-Ost (Voronež) in August 1940, when one Panzerjäger I from Pz.Jg.Ab 521 engaged a Soviet BT tank. When the BT crew spotted the Panzerjäger I, the commander of the Soviet vehicle decided to ram the German tank destroyer. The Panzerjäger I managed to fire two shots at the incoming BT tank. After these hits, the BT tank caught fire but kept moving and rammed the Panzerjäger I.

The German losses by the end of 1941 were tremendous. In the case of the Panzerjägers armed with the 47 mm guns (both those based on the Panzer I and those based on the Renault R35), around 140 vehicles were lost. By 1942, most Panzerjager I units were being equipped with the better armed Marder III series. By May 1942, Pz.Jg.Abt 521 had only 8 operational Panzerjäger I vehicles. It was reinforced with Marder III vehicles with the 7.62 cm gun and with 12 ammunition carriers based on the Panzer I chassis. In 1942, Pz.Jg.Abt 670 operated one company of Panzerjäger I and two of Marders. Pz.Jg.Abt 529 had only two vehicles remaining when it was disbanded in late June 1942. Pz.Jg.Abt 616 managed to effectively maintain three Panzerjäger I Kompanies during this time.

While the Panzerjager I proved to be effective against the lighter armored Soviet tanks (T-26 or BT series), the newer T-34 and KV series proved to be problematic to the point that the 4.7 cm gun was deemed ineffective. This forced the Germans to look for larger caliber weapons. The surviving Panzerjäger I became obsolete by the standards of late 1942 and early 1943.

The low armor thickness of the Panzerjäger I could be easily pierced by any kind of gun larger than rifle caliber. Photo: www.worldwarphotos.info
In the hope of increasing the armor protection, the crews would sometimes add tracks to the vehicle’s front. While this did little do increase armor protection, it at least provided spare track links if needed. Photo: www.worldwarphotos.info

In Africa

Pz.Jg.Abt 605 was the only unit equipped with the Panzerjäger I to operate in North Africa. It was shipped to Africa from Italy and arrived in mid-March 1941. Pz.Jg.Abt 605, with its 27 operational Panzerjäger I, was allocated to the 5th Leichte Division. At the beginning of October 1940, in order to replace losses, a group of five Panzerjäger I were to be shipped to Africa but only three arrived. The remaining two were lost during the sea voyage.

By the time of Operation Crusader in November 1941, Pz.Jg.Abt 605 was in action and, on that occasion, lost 13 vehicles. In order to replenish the dwindling supply of spare parts for the Panzerjäger I, the Panzer I tanks of the German Afrika Korps were often cannibalized for the purpose, as they were obsolete or were put out of action. By the end of 1941, Pz.Jg.Abt. 605 had 14 operational Panzerjäger I remaining.

In January 1942, it was reinforced with four more vehicles, followed by three more in September and October 1942. In order to give Pz.Jg.Abt 605 much stronger firepower, in early 1942, the unit received improvised Sd.Kfz.6 half-tracks armed with the 7.62 cm gun, known as ‘Diana’. In mid-May 1942, Pz.Jg.Abt. 605 had around 17 operational vehicles. By the battle of El Alamein in October 1942, eleven vehicles were reported as operational. The last two replacement vehicles arrived in November 1942.

Panzerjäger I being unloaded from a ship in North Africa. Photo: www.worldwarphotos.info

During the African campaign, the Panzerjäger I was plagued with the same problems like on the other fronts. The armor was too weak, the suspension was prone to breakdowns, there were problems with the radio’s operational range, the engine frequently overheated and others. On the other hand, the gun’s performance was deemed sufficient. There are reports of three destroyed Matilda tanks at 400 m range in one action by using the rare tungsten rounds.

Panzerjäger I during the African campaign, 1941/1942. Due to problems with supplies, the crews often carried additional canisters full of water or fuel. Photo: www.worldwarphotos.info

Surviving vehicles

Four vehicles were captured by the Allies. One was sent to Britain and one to America for evaluation. This last one would remain at the American Aberdeen Proving Grounds up to 1981, when it was gifted to Germany. After restoration, it was moved to the Wehrtechnische Dienstselle at Trier. The fate of the remaining captured vehicles is unknown.

The only surviving Panzerjäger I, at the Wehrtechnische Dienstselle. Photo: Craig Moore

Conclusion

The Panzerjäger I proved to be an effective vehicle but not without faults. The gun had a higher armor penetration power than the current German anti-tank guns in the first years of the war. The problems with this vehicle were numerous, including the low armor protection, engine problems, transmission breakdowns, small crew, etcetera. Despite these, it proved to be capable of destroying enemy tanks that were otherwise immune to the smaller caliber 3.7 cm PaK 36.

The Panzerjäger I’s greatest merit is that it showed that the self-propelled anti-tank weapon concept was feasible and effective. It allowed the German Army to gain important experience in this kind of warfare.



Panzerjäger I of the Panzerjäger Abteilung 521, France, May 1940. It was part of the only eighteen vehicles ready on time to take part in the opening hours of the operations. The other companies were still training and would be engaged later in the campaign.


A Panzerjäger I operating during the Balkan campaign, in Yugoslavia and Greece, April-May 1941.


A Panzerjäger I of the Afrika Korps, Panzerjäger-Abteilung 605 (605th Anti-tank Battalion), Gazala, February 1942. Only 27 vehicles were sent, plus some replacements. They were the only tank-hunters available to Rommel during the whole campaign, until El Alamein.

These illustrations were produced by Tank Encyclopedia’s own David Bocquelet.

Panzerjäger I specifications

Dimensions 4.42 x 2.06 x 2.14 m (14.5×6.57×7.02 ft)
Total weight, battle-ready 6.4 tonnes
Crew 3 (commander/gunner, loader and the driver/radio operator)
Propulsion Maybach NL 38 TR
Speed 40 km/h, 25 km/h (cross country)
Range 170 km, 115 km (cross country)
Armament 4.7 cm PaK (t)
Traverse 17.5 °
Elevation -8° to +10°
Armor Hull 6 to 13 mm, Upper armored superstructure 14.5 mm
Total production 202

Sources

N. Askey (2014), Operation Barbarossa: The complete organisational and statistical analysis and military simulation Volume IIB, Lulu publisher.
P. Thomas (2017), Hitler’s Tank Destroyers 1940-45. Pen and Sword Military.
L.M. Franco (2005), Panzer I The beginning of a dynasty, Alcaniz Fresno’s SA.
D. Nešić, (2008), Naoružanje Drugog Svetsko Rata-Nemačka, Beograd
P. Chamberlain and H. Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
P. Chamberlain and T.J. Gander (2005) Enzyklopadie Deutscher waffen 1939-1945 Handwaffen, Artilleries, Beutewaffen, Sonderwaffen, Motor buch Verlag.
A. Lüdeke (2007) Waffentechnik im Zweiten Weltkrieg, Parragon books.
D. Doyle (2005). German military Vehicles, Krause Publications.
P. P. Battistelli (2006), Rommel’s Afrika Korps, Osprey Publishing.
H.F. Duske (1997), Nuts and Bolts Vol.07 Panzerjäger I, Nuts & Bolts Books.
T.L. Jentz and H.L. Doyle (2010) Panzer Tracts No.7-1 Panzerjäger


Categories
WW2 German Tank Destroyers

8.8 cm PaK 43/1 auf Fgst.Pz.Kpfw III und IV (Sf) Sd.Kfz. 164 “Nashorn”

ww2 German Tanks Nazi Germany (1943)
Tank Hunter – 494 built

As the German armored forces advanced on all fronts in 1940 and 1941, they encountered many different enemy tank types that were almost immune to the guns of their Panzers. In France, these were the Char B1 bis and the British Matildas (both the A11 and A12 Matilda). When the Germans met the first Matildas at Arras, it was an unpleasant shock, although one that was overcome. In the Soviet Union were the famous T-34 and heavy KV-series, and in Africa, again, (in larger numbers) the A12 Matilda tank. While they were able to defeat these by various means, the Germans were pressed to find a better way to combat these threats.
The newly developed towed anti-tank guns (like the PaK 40, built in 1942 and the much stronger PaK 43 in 1943) could efficiently destroy these tanks, but they were not suitable for offensive operations due to their heavy weight. A logical solution was to try to mount these towed anti-tank guns on a tank chassis and thus solve problems of mobility, and so the new Panzerjäger’s were born.
These new vehicles followed a similar pattern: most were open-topped, with limited traverse, and thin armor. They were, though, armed with an effective anti-tank gun, and usually with one machine gun. They were also cheap and easier to build than ordinary Panzers. Panzerjäger’s were, in essence, improvised and temporary solutions, but effective ones nevertheless. Just as the name suggests, they were designed to hunt down enemy tanks at long range on open fields. Their primary mission was to engage enemy tanks and to act as fire support at long range from carefully selected combat positions, usually on the flanks.
In 1943, the development of an anti-tank gun version of the FlaK 41 was completed. As, at that time, there were no dedicated chassis’ designed to carry this gun and in order to increase the mobility of the towed version, a temporary self-propelled solution was needed. From this need, a new vehicle, well known as the Nashorn (Rhinoceros), would be designed and built based on a modified Panzer III/IV tank chassis.

History

The story of the Nashorn began in June 1942, when Hitler demanded that a new anti-tank gun should be developed based on the 88 mm Flak 41. Two famous German weapon manufacturers, the firms of Krupp and Rheinmetall, were tasked with its development. It was estimated that the development and production of some 300 to 500 guns would be ready by mid-1943. For this reason, it was proposed to also develop different towed carriages and self-propelled designs.
It was quickly noted that the new Selbstfahrlafette (self-propelled chassis) could not be completed by the time the new 88 mm gun was ready and so a new solution was needed to get the new weapon on the battlefield faster. In a Wa Pruef meeting held on 28th July 1943, it was decided to speed up the project by using already existing production capacities. An order was placed to the firm of Alkett-Borsigwalde to design and build a self-propelled chassis by using different components of the Panzer III and IV. Alkett was quick to make a soft steel metal prototype which was presented to Hitler in early October 1942. The new chassis was to be used for two different projects, one armed with the 88 mm gun and the second armed with 15 cm s.F.H 43 long-range artillery gun. Hitler was impressed with both designs and ordered a production run of 200 vehicles (100 of each).

An early production Nashorn. Its travel lock is missing. This vehicle was captured by the Soviets and tested at Kubinka. Source

Name

There were several different military designations for this vehicle, such as: Sfl. auf PzKpfw. III/IV Fahrgestell Hornisse mitt 8.8 cm PaK 43 from January 1943, Panzerjager III/IV “Hornisse” für 8.8 cm PaK 43/1 (Sd.Kfz.164) from August 1943, 8.8 cm PaK 43/1 Sfl. “Nashorn” from September 1944 and 8.8 cm PaK 43/1 auf Fgst.Pz.Kpfw.III und IV (Sf) Sd.Kfz. 164.
Early on, it was also simply known as the Hornisse (Hornet). In late 1943, Hitler ordered to change the nickname to Nashorn (Rhinoceros). For the sake of simplicity, this article will use the Nashorn name.

Specification

Despite its close resemblance to the ordinary Panzer IV tank chassis, the Nashorn was actually designed and built by combining elements and components from both the Panzer III and Panzer IV. The Nashorn hull was mostly the same as that of the Panzer IV, but with the width of a Panzer III. Most of the components of the drivetrain were taken also taken from the Panzer III, including the two front drive sprockets, the transmission, and the steering unit with the drive shaft. The suspension was taken directly from the Panzer IV and it consisted of eight small road wheels on each side, suspended in pairs by leaf-spring units, a rear idler and four return rollers on each side. The tracks were also taken from the Panzer IV, with 108 links in total. The distance between the rear road wheels and the idler was somewhat increased during the production. The Nashorn could be equipped with different track types depending on the combat need and availability, like the Winterketten or Osketten for example. Despite being produced up the end of the war, the number of return rollers was never reduced to three (per side) on Nashorns, in contrast to other Panzer IV-based based vehicles.
The engine compartment was moved to the vehicle’s reinforced center. This was mostly done in order to create enough room for the gun and the crew to operate efficiently at the back. The engine was the Maybach HL 120 TRM, taken together with the radiators, cooling fans, and muffler from the Panzer IV. The engine performance was more or less the same as on the Panzer IV, giving a maximum speed of 40 km/h. Due to the central engine position, in order to avoid engine overheating, two (on both lower hull sides) rectangular shape cooling ports were added. In addition, the Nashorn had a crew interior heater system despite being open-topped. The engine was started by using an electrical starter but, depending on the situation, could be started manually by a crank located in the crew compartment. The fuel load was around 600 l (or 470 l depending on the source) held in two fuel tanks placed below the fighting compartment. With these, the Nashorn had an operational range of 260 km (around 130 km cross country). The Nashorn also had a problem with frequent breakdowns of the engine, mostly due to overheating, which was never fully solved.

Side view of the Nashorn, with the engine cooling ports visible. Source
The front of the Nashorn was covered by a well-angled and simple armored plate. The driver compartment on the front left side was fully protected. The driver had three observation hatches, one for the front, and one on each side. On top of the driver’s enclosed compartment was a round hatch. The rear crew compartment was protected by armored slats, but was open from the top. To the rear was a two-part door, through which the crew members could access their positions. The new superstructure (both the front and the rear) had a very simple design but the armor was very light. The maximum armor was 30 mm around the driver compartment and the frontal glacis, the hull sides and rear were 20 mm and the bottom 10 mm. The superstructure armor was only 10 mm on all sides, the top was open. Originally, it was planned that the armor would be 20 mm on the superstructure and 50 mm in the hull, but these plans were dropped in order to save weight. The new superstructure was built by Witkowitzer Bergütte und Geschutzwerke from Witkowice Silesia, all being completed by the end of 1943.
The rear part of the vehicle was the combat compartment, which offered the crew more working space. Crew-necessary equipment, instruments, personal belongings, weapons and ammunition were also stored here. Most of these were stored on the compartment sides. On the right side were the mountings for an MG-34 machine gun (with 600 rounds of ammunition) and spare parts, gas mask box, radio equipment, and 88 mm round storage cases. On the opposite side there was another 88 mm round storage case, MG-34 mounting, signal pistol, hot air inlets from the engine, a lever for releasing the gun lock, and the gun sights mount with its box. At the rear were usually held the crew personal weapons (MP-38 for example) and ammunition. Other equipment that was stored included the tarpaulin for protection from bad weather, first aid kits, fire extinguishers, and poles for determination of the direction of the firing axis (these were removed after March 1943) etc.
The crew consisted of five members, the commander, the gunner, the radio operator, the loader, and the driver. The driver and the radio operator were stationed in the front hull as on the Panzer IV (driver to the left and radio operator right) and were the only crew members that were fully protected. The driver controlled the vehicle by using levers and pedals that were positioned in front of the driver. Behind them, in the open combat compartment, were the remaining crew members. The gunner was stationed to the left of the gun, while the commander and the loader were behind him. For the crew, two internally mounted periscopes could be added for viewing the surrounding without being exposed to enemy fire.
In the case of Abteilung Stab Kompanie, additional radio equipment was provided (Fu 8) beside the standard radio. This caused some problems for the radio operator, as he was physically unable, due to different positions of the radio sets, to operate them both. The Nashorn equipped units often requested that an additional radio operator be provided to the Abteilung Stab. It is not clear if this was ever implemented, as the sources do not give more information on this matter.

The 88 mm PaK 43/41

During the war, Germans produced two anti-tank gun versions based on the 88 mm Flak 41. The first one was the PaK 43, which was mounted on a four-wheel carriage, and the second was the PaK 43/41 (also known as PaK 43/1 in some sources), placed on a mount with components from a few different artillery pieces (wheels from 15 cm s.FH.18 and the split trail legs from 10.5 cm l.FH.18). The PaK 43/41 used a horizontal sliding block mechanism, while the Pak 43 had a vertical one. The PaK 43/41 was an effective anti-tank gun, being able to take out all of the Allied tanks, but was also too heavy. It was jokingly known by its crews as the ‘barn door’ (Scheunentor).

Side view of the 88 mm PaK 43/41. Note the Lorraine 37L-based SPG in the back. Source
The PaK 43/41 was chosen as the main armament of the Nashorn. The installation was done by placing the gun mount above the central engine compartment. During production, there were plans to replace it with the Pak 43 version, but this was never implemented. The new gun was more or less the same as the towed version, with minor modifications in order to install it inside a vehicle. The 88 mm gun had a traverse of 30° and elevation of -5° to +20° (or -5° to +35° depending on the source). The recoil cylinder was located under and the recuperator above the gun. There were also two counterbalance cylinders (one on each side).
For direct fire, the Zieleinrichtung 43 SVo (with 3x magnification and 8-degree field of view) gunsight was used. For indirect fire, it was the Zieleinrichtung 34. These two sights were installed on the first series of 50 vehicles, after which the Zieleinrichtung 37 (with Sfl. Z.F.1a periscope) was used. With the installation of the new gun sight, the open slot in the gun shield where the old sight was positioned was closed.
The Nashorn 88 mm gun could fire four different types of ammunition:

  • 88 mm Pzgr.39 (with a weight of 10 kg and muzzle velocity of 1000 m/s) AP round
  • 88 mm Sprgr. (with a weight of 9.4 kg and muzzle velocity of 700 m/s) HE round with a maximum range of 17,500 m
  • 88 mm Pzgr.40 (with a weight of 7.3 kg and muzzle velocity of 1,140 m/s), a tungsten-cored round, but it was rarely deployed due to general lack of this metal
  • 88 mm Gr.HL (with a weight of 7.62 kg and muzzle velocity of 600 m/s) hollow charge round


A loader of a Nashorn is preparing to load a new round into the gun. Despite the relatively spacious rear fighting compartment, the total ammunition load was small. Source.
When using the standard AP round, the gun could penetrate 182 mm of armor sloped at 30° at a range of 500 m. At, 1,000 m, this dropped to 167 and at 2000 m to 139 mm. The rare tungsten round, at the same ranges and angle, could penetrate 226 mm, 162 mm and 136 mm. The hollow charge round could penetrate 90 mm of armor inclined at 30° at any range.
Despite the larger crew compartment, due to the large ammunition size, only a small number of rounds was carried inside the Nashorn. The ammunition was stored in two (one on each side) ammunition bins with 16 rounds in total, with an additional 24 round that could be stored on the floor. Due to the small ammo stowage, a constant supply of ammunition was to be provided by using Maultier half-tracks, which could not be always successfully achieved on the battlefield. It is plausible that the crews would have stored additional rounds in any available free space inside the vehicle. There were some problems with a general lack of ammunition, which could not be produced in sufficient numbers.
Originally, early vehicles were equipped with the same travel lock as on the Hummel, probably in order to simplify production. This travel lock did the job of holding the gun in position, but it had a drawback. In order to free the gun, one of the crew had to go out and manually remove the bolt that held it in place. While this is not a big issue for the Hummel, a vehicle that was usually providing fire support (depending on the combat situation) kilometers away from the main front line, for the Nashorn, which was far closer to the front, this was a big issue. One of the crew members had to expose himself to possible enemy fire and the time lost could prove to be fatal The gun lock was later replaced with an improved one that could be controlled from inside the vehicle. There was also a rear gun position travel lock, but its use was discarded in later models. The gun shield would see some changes in design to better fit with the superstructure sidewalls.

Production

Two firms were selected for the production of the Nashorn: Alkett from Berlin and Stahlindustrie from Duisburg. Alkett was charged with series production of 10 vehicles in January, 20 in February, 30 in March and then at a rate of 30 vehicles per month until March 1944, producing a total of 420 vehicles. Stahlindustrie was tasked with a smaller production series of 5 in May, 10 in June, 15 in July and then 15 per month (also until March 1944), with a total production of only 150 vehicles.
Like nearly all German production plans, the one for the Nashorn did not go as intended. In early February, in a meeting between Hitler and Speer, it was decided to reduce the monthly production of the Nashorn from 45 to only 20 vehicles. This was done for two reasons. Firstly, the Nashorn was seen as a temporary solution and never intended for large mass production. Secondly, it was intended to increase the production of the more important Hummel SPG. Due to a lack of main guns, Stahlindustrie was not able to commence Nashorn production and instead began producing Hummels. In July 1943, the production numbers were once again changed to 500 vehicles. Plans for changing the main armament to a modified 88 mm PaK 43 were abandoned in the hope of increasing the numbers of PaK 43/41 guns available, in order to build all the 500 planned vehicles. Due to the Allied bombing campaign in late 1943, the production of the 88 mm Pak was significantly slowed down, which also influenced the production of Nashorn. By 4th November 1943, some 284 vehicles were completed, while the remaining 216 were to be built in a series of 40 vehicles until March 1944, with the last 16 the following month.
In late November, there were even talks of stopping the Nashorn production, but it was decided to go on with it until the Jagdpanther was ready in 1944. Also in November, Alkett was bombed, so Nashorn production had to be moved to Deutsche Eisenwerke A.G. which had assembly factories located in Teplitz-Schönau and Duisburg. By May 1944, Alkett stopped the production of the Nashorn and Deutsche Eisenwerke were tasked with series production of 100 vehicles from April to June 1944. The order was changed to 130 from April to September, but due to many delays (lack of engines, transmissions, etc.), the production continued at a slower pace until the end of the war. In total, 494 vehicles (chassis number 310001-310494) were built, with 345 in 1943, 133 in 1944 and the last 16 in 1945.
In March 1945, there were discussions to reuse Hummel chassis’ and re-equip them with 88 mm guns, but due to material shortages, the need of the mobile artillery and the close end of the war, nothing came of this proposal.

Production Changes

As the Nashorn was considered only a temporary solution, the Germans did not introduce many modifications during its production run. It would only receive these modifications in order to simplify construction. Because of these changes, there were some minor differences between the early and late produced vehicles. Officially, there was never a special designation change in order to identify the early or late produced vehicles.
The early production vehicles had two front Bosch headlights, rear fitted mufflers and two front-mounted wheels. The later built vehicles had only one headlight, on the vehicle’s left side. The rear exhaust muffler was removed and replaced with exhaust pipes located on both of the vehicle’s sides. The front two wheels were moved to the rear and the rear mudguards were removed.
The early vehicles were equipped with the Hummel travel lock, but later models would have a new travel lock, equipped with a very simple wire release system which could be used from inside the vehicle.

Front view of the Nashorn, showing the improved travel lock that was released by a cable from inside the vehicle. These Nashorn “crewmen” are actually British soldiers, as this vehicle was captured somewhere in Italy. Source: Wikimedia
The rear mudguards were removed on later-built vehicles. There were also minor changes in the design of the driver’s observation hatch cover. Two brake vents were placed in the lower part of the angled front armor. During production, the size and design of the brake vents was slightly changed.
A hole with a movable armor cover was added to the lower-left of the hull. Its purpose was to help with warming the engine coolant with a blowtorch in cold weather. Two towing hooks were welded to the rear hull.

A late production model, with the two spare wheels mounted on the lower hull rear. There the two welded towing hooks, and the removal of the rear fender is also visible: Source.
Interior differences were not recorded, but there is always a possibility that there were some minor changes. While the Hummel received a specially designed front hull crew compartment (driver and radio operator), this was never implemented on the Nashorn.
Other changes were connected to the running gear of the Panzer III and IV. The early production vehicles had drive sprocket taken from the Panzer III Ausf. E (type Z.W.38). The return rollers and the idlers were taken from Panzer IV Ausf.D and F. Later produced vehicles used the drive sprocket taken from Panzer III Ausf.H (or Ausf.J depending on the source). There is evidence that a number of vehicles were built using a combination of these components.
There were also field modifications. While most were minor, like adding an extra tool or supply box, others include additional frontal armor plates in hope of increasing the armor thickness.

Organization

The Germans originally planned to use the Nashorn equip the 10 vehicle-strong Kompanie in the Panzerjäger Abteilung of the Panzer Divisions. This was never implemented. Instead, Nashorns were given to independent Schwere (Heeres) Panzerjäger Abteilung (heavy anti-tank battalions) which were then, depending on the operational needs, temporarily attached to different Armee Korps. This was a standard German war practice with other rare armored vehicles (like Tiger or Ferdinands for example), who were also grouped into independent units. Only Corps and Army Headquarters had the authority to give such orders.
These Schwere Panzerjäger Abteilung would be composed of 45 vehicles, divided into three Kompanie (companies) with 14 Nashorn each and a Stabskompanie with 3 vehicles. The Kompanies were again divided into Zuge (platoons), each with 4 vehicles and with 2 in the Command Platoon.

In combat

During the war, several Schwere Panzerjäger Abteilung (short s.Pz.Jg.Abt) would be formed, including 560, 655, 525, 93, 88, 664, 519 and 424. Other smaller units were formed, including the Schwere Panzerjäger Ersatz 43 und Asbuildung Abteilung, s.Pz.Jg. Kompanie 669 and Panzerkompanie Kummersdorf. The only units to receive Nashorns were the 1st Panzer Division and possibly the Das Reich Division.

Schwere Panzerjäger Abteilung 560

The forming of s.Pz.Jg.Abt 560 and equipping it with the Nashorn was a slow process. The first six vehicles were received in February, followed by 24 in March, and the last 15 in May 1943. In preparation for the coming Kursk offensive, s.H.Pz.Jg.Abt 560 was to be transported to Kharkiv in late April 1943. By the beginning of May 1943, the transportation of the unit was almost complete. In June, it was part of the Panzer Gruppe “Kempf”, but due to many mechanical problems, this unit was not ready for combat. While this unit did not see action during the battle for Kursk, it was busy defending the XXXXII Armee Korps’ (In September renamed into the 8th Armee) flanks from July onwards.

This vehicle had an early type travel lock that had to be released from outside. This vehicle belonged to s.Pz.Jg.Abt 560. It is on a train, possibly headed for the Eastern front. Source.
Throughout August, this unit also supported the 39th, 161st, and 282nd Infanterie Divisions. During this time, 14 vehicles were lost. s.Pz.Jg.Abt 560 would be used mostly in defending actions against Soviet attacks until the end of 1943.
Thanks to constant reinforcement (with 5 vehicles in September, October, November, and 4 in February 1944), s.Pz.Jg.Abt 560 managed to maintain almost full combat strength throughout 1943, although not all the vehicle were always operational. For example, on 31st October 1943, there were 39 vehicles in the unit, with only 8 operational and the remaining in various state of repair. By the end of 1943, s.Pz.Jg.Abt 560 reported having destroyed around 251 enemy tanks.
In January 1944, s.Pz.Jg.Abt 560 participated in the German defense of the city of Kirovograd (currently known as Kropyvnytskyi). In early February, this unit began a slow withdrawal toward Mielau in order to be requipped with the new Jagdpanther. By March, it was still engaged on the Eastern front under the LVII Pz.Korps, losing 16 Nashorn. By this time, s.Pz.Jg.Abt 560 had only 4 operational and 10 non-operational vehicles remaining. In late April 1944, the withdrawal was completed and s.Pz.Jg.Abt 560 was moved to Mielau.

Schwere Panzerjäger Abteilung 655

Another unit equipped with Nashorns was s.Pz.Jg.Abt “Stalingrad”. In April 1943, this unit was renamed s.Pz.Jg.Abt 655. For the creation of this unit, the remaining elements from Panzerjäger Abteilungen 521, 611, and 670 were used. It is for this reason that its Kompanie were named after these Abteilungen instead of the ordinary 1st, 2nd, and 3rd designations.
In April 1944, these would be renamed to 1st, 2nd, and 3rd Kompanie. In April 1943, this unit had 35 vehicles. The last 10 vehicles arrived in May. The unit assembly and training was carried out until June 1943. By the time of the Kursk offensive s.Pz.Jg.Abt 655 was part of the Heeresgruppe mitte, but was not directly involved in combat. It would, however, be engaged with the Second Armee in trying to stop the Soviet attacks. This defense proved to be unsuccessful and the unit was forced to pull out in the direction of the Desna and Dnieper rivers. In a report dated 1st July, s.Pz.Jg.Abt 655 was noted to have lost eight vehicles: one to a mine, and the remaining seven during an air raid. All these were recovered and sent to Germany for repair. From November to the end of 1943, s.Pz.Jg.Abt 655 was mostly used in support of different Panzer Division, both in the attack and in the defense, around the Pripet Marshes.
The Nashorns proved to be effective, as can be seen in the report of Kompanie 521 during a combat operation defending Orel in mid July 1943, when following vehicles were claimed to have been destroyed: 1 x KV-2, 19 x KV-1s, 430 x T-34s, 1 x M3 Lee, 1 x T-60, 5 x T-70s, and 1 rocket launcher mounted on a tank chassis, with the loss of only two Nashorns. These numbers are just claims and were probably larger than reality.
s.Pz.Jg.Abt 655 received around 33 Nashorns as replacements (8 in July, 5 in October, November and December, and the last 10 in March 1944). This unit was even above the official combat strength with 47 operational (and 1 in repair) vehicles during June-July 1944.
In February, it was stationed in Belorussia in support of the elements of the Second Armee. By the end of May 1944, this unit was transferred to the 4th Panzer Armee, and it would see action in Ukraine on the Vistula river and at Lublin. In August 1944, s.Pz.Jg.Abt 655’s 1st and 2nd Kompanie were moved from Heeresgruppe Nord Ukraine to the training center at Mielau to be equipped with Jagdpanters and Jagdpanzer IVs.


Sd.Kfz.164 of the 2nd Kompanie of the schwere Panzerjäger Abteilungen 560, summer 1943.

Nashorn of the schwere Panzerjäger Abteilungen 519, Group center, Vitebsk area, Russia, winter 1943-44.

Nashorn of the schwere Panzerjäger Abteilungen 88, Russia.

Another Nashorn of the schwere Panzerjäger Abteilungen 88, Russia, 1944.

Sd.Kfz.164 Nashorn of the schwere Panzerjäger Abteilungen 525 in Italy, summer 1944.

Sd.Kfz.164 Nashorn in Italy, schwere Panzerjäger Abteilungen 525.

Schwere Panzerjäger Kompanie 669

The 3rd Kompanie of s.Pz.Jg.Abt 655 was equipped with all remaining Nashorns (possibly around 24 vehicles). The unit was renamed to Einsatz Kompanie 655 and was stationed on the Eastern Front. It would remain on the Eastern Front supporting the 4th Panzer Armee near the Sandomierz bridgehead until late 1944. In November 1944, it was renamed to s.Pz.Jg.Kp 669. The combat strength of the s.Pz.Jg.Kp 669 was around 20 Nashorns (December 1944). During the Soviet offensive in January 1945, s.Pz.Jg.Kp 669 was part of 17th Panzer Division, suffering heavy losses during the battle for Kielce. In February 1945, it was reinforced with 13 new vehicles. The unit met its end during the battle for Prague in May 1945, when it surrendered to the Soviets.

Schwere Panzerjäger Abteilung 525

Schwere Panzerjäger Abteilung 525 was formed in August 1939 as Pz.Abw.Abt 525. During the attack on the West, this unit was equipped with 88 mm Flak 18 gun for use against tanks and bunkers. In France, it was used to attack parts of the Maginot line. Later, it would see action in the Balkans and in the Soviet Union. In late April 1943, it was ordered to reequip s.Pz.Jg.Kp 525 with Nashorns in a standard 45-vehicles organization. It was moved to Magdeburg where it was to be supplied with these vehicles, and by July 1943 the assembly of the 45 Nashorns was completed.
It was originally allocated to the 26th Panzer Division, but due to the need for crew training, the unit was only combat-ready by the beginning of August 1943. In preparation for the German occupation of Italy, s.Pz.Jg.Kp 525 was transported to northern Italy, but due to the Allied offensive, the unit was repositioned to the south. It was attached to different units (like the 90th Panzer Grenadier Division or 371 Infantry Division) and was mostly used for coastal defense. During December 1943, it was stationed near Rome as part of the 3rd Grenadier Division. From January 1944, it was engaged in defense of Cassino, where four Nashorns were destroyed and three damaged, but later repaired. Thanks to well selected and favorable combat positions, they managed to take advantage of their strong guns, even achieving a claimed kill from more than 2,800 m against an Allied Sherman tank. The 1st and 2nd Kompanie would see action during the Battle of Anzio in early 1944. In May, s.Pz.Jg.Kp 525 was again stationed around Cassino.
s.Pz.Jg.Kp 525 suffered losses during the Battle for Pontecorvo, where the Canadian Allied soldiers managed to capture one and destroy three vehicles. s.Pz.Jg.Kp 525 also saw action against Polish forces (part of the 2nd Corps) in August 1944, when one was captured and two destroyed.
On 31st August, s.Pz.Jg.Kp 525 was to be reinforced with Jagdpanthers and thus form a gemischte Jagdpanther-Abteilung. For this reason, the 1st Kompanie was sent to Mielau for rearming. The 1st Kompanie vehicles were given to the 2nd and 3rd Kompanies and these two would remain in Italy supporting the 10th Armee. In April 1945, what remained of the 2nd Kompanie was supporting the 26th Panzer Division and the 3rd Kompanie was supporting the 29th Grenadier Division. Many more vehicles were captured by the Allies during the German retreat across the River Po, as a number of Nashorns were abandoned by the Germans.
In late November 1944, the 1st Kompanie was in the process of reorganization, but due to the rapid development on the front, it was sent to reinforce Kapmfgruppe Fuehter-Begleit-Brigade. It was equipped with 10 Nashorns in late November 1944.

Schwere Heeres Panzerjäger Abteilung 93

The original name of this unit was Pz.Abw.Abt. 23 and it was formed in 1935. The name was changed to s.Pz.Jg.Abt 93 in October 1942. It was part of the 26th Panzer Division, stationed in France for training and rest. In June 1943, s.Pz.Jg.Abt 93 was chosen to be equipped with 45 Nashorns, and this process was completed in the period from July to September 1943. As the 26th Panzer Division was needed on the Italian front and s.Pz.Jg.Abt 93 was combat-ready, it was decided to detach it from this unit and attach it to the 7th Amree in Western France.
It was, from September 1943, engaged with Army Group “South” on the Eastern front for the support of the German retreat at the Dnieper River. and was used to support the German attack near Kryvyi Rog in late October. In early 1944, it supported the retreat of the 24th Division and the 6th Army. In early 1944, this part of the front was quiet, until 20th August when the Soviets launched a large offensive. Most elements of s.Pz.Jg.Abt 93 were lost together with the 6th Army near Chișinău (Kishinev). The 2nd Kompanie would survive and would be used to support s.Pz.Jg.Abt 525 in defense of the Rhine river. The final fate of what remained of s.Pz.Jg.Abt 93 is not clear.

Actions of the Schwere Panzerjäger Abteilung 93 and 525

s.Pz.Jg.Abt 93 and 525 were sent to the Western Front in order to reinforce the German forces which were desperately trying to stop the Allied advance to the Rhine. s.Pz.Jg.Abt 525 (1st Kompanie) was, in November 1944, equipped with 10 Nashorns while s.Pz.Abt 93 (2nd Kompanie) was, by December, equipped with just 12 Nashorns.
Both Abteilung 525 and 93 were attached to the 106th Panzer Brigade and operated in the Kolmar pocket until late December 1944 while suffering no losses. On 29th (or 27th depending on the sources) December, both were used to support Jagdpanthers from s.Pz.Jg.Abt 654. Later in January, they were used to reinforce the StuG.Brigade 280 until February. By that time, s.Pz.Jg.Abt 525 had suffered such heavy losses, that what was left was incorporated into s.Pz.Jg.Abt 93. In February, s.Pz.Jg.Abt 93 was renamed to s.Pz.Jg. Kompanie 93 due to its small size. By the end of February 1945, the Kompanie had only 10 vehicles left and was supporting 106th Armored Brigade near Cologne. In March, one Nashorn managed to destroy the new American T26E3 (at a distance of 500 m) tank near the town of Niehl. The Kompanie finally met its fate in April 1945, when it surrendered in the Ruhr area.

Schwere Panzerjäger Abteilung 519 and 664

Another unit to be equipped with Nashorns was s.Pz.Jg.Abt 519, which was formed in late August 1943. By November 1943, the last vehicle was received and the unit had 45 operational Nashorns. It was repositioned to the Eastern Front, where it supported the 3rd Panzer Armee. One of the first actions was the battle for Vitebsk, where the advancing Soviet forces were stopped. It would be stationed there from December 1943 to January 1944, during which time it helped repel many Soviet attacks. During the period from 10th December 1943 to 24th February 1944, s.Pz.Jg.Abt 519 claimed to have destroyed some 290 enemy tanks with the loss of only 6 vehicles, of which 4 were destroyed by their crews (due to a lack of towing vehicles).
From January to June, s.Pz.Jg.Abt 519 saw very few combat actions and was part of the 3rd Armee. From June 1944, s.Pz.Jg.Abt 519 was used to support the 4th Armee in Belorussia. By the end of June, s.Pz.Jg.Abt 519 claimed to have destroyed around 112 Soviet tanks with some losses. To replace the losses, this unit received 15 new vehicles (5 in March, April, and June). Due to the following fighting in July 1944, the unit lost many of its Nashorns. What was left of s.Pz.Jg.Abt 519 was used to support the Panzerkampfgruppe Hoppe by the middle of July. By August 1944, like the previous units, s.Pz.Jg.Abt 519 was also sent to Mielau to be equipped with Jagdpanthers, but was also equipped with StuG III.

Late production version somewhere on the eastern front. The crew observe their surroundings for possible enemy targets. The Nashorn is positioned between the two wooden houses which serve as makeshift camouflage. This vehicle belongs to s.Pz.Jg.Ab 519’s commanding Kompanie. Source.
Its remaining vehicles were given to s.Pz.Jg.Abt 664 which was equipped with towed 88 mm PaK 43 guns. This unit never achieved a full combat strength, with only around 12 vehicles being used (October 1944). It was engaged with HeeresGruppe Mitte, but was lost in late January 1945 on the Eastern Front.
Interesting to note is that Nashorn crews from s.Pz.Jg.Abt 519 had a habit of naming their (and paining it on the vehicle) vehicles after East German cities (like Pommern) or animals (Puma, Tiger, etc).

Schwere Panzerjäger Abteilung 88

s.Pz.Jg.Abt 88 was originally formed in late October 1940, and by late 1943 was mostly engaged on the Eastern Front. In late November, it was moved to Mielau to be equipped with Nashorns and for crew training. The unit reaches its full combat strength by January 1944 but was not ready for combat operation until February 1944.
By early 1944, s.Pz.Jg.Abt 88 was part of the 1st Panzer Armee on the Eastern Front. s.Pz.Jg.Abt 88 was heavily engaged during the battle of Kamienets-Podolsky. Later, in March/April 1944, this unit supported the 6th and 17th Panzer Divisions. An interesting fact is that, in May 1944, one s.Pz.Jg.Kp 88 Nashorn managed to destroy a new Soviet tank IS-2 in somewhat comic circumstances. This vehicle had actually been captured by the Germans and was in the process of being towed to the rear when it was spotted by the Nashorns. They immediately destroyed it without knowing it was actually captured by their comrades, although it is unlikely that the soldiers towing their prize back were amused by this incident.
This unit suffered heavy losses during the support of the Army Group A, around Brody and Lvov. In order to replace the losses, it received 30 new vehicles in August 1944. The rest of the year, this unit was stationed near Miechow. From January 1945, it was engaged against the Soviets near Lisow and Kielce.
In late January, an unknown number of Nashorns from this unit were supporting the German defense of Preiswitz near the village of Gieraltowice. During these actions, some Nashorns from s.Pz.Jg.Abt 88 were equipped with experimental night vision equipment, but in what numbers and how effective this system was is unknown. In March, the remnants of s.Pz.Jg.Abt 88 supported the 17th Armored Division near Lauban. s.Pz.Jg.Abt 88 would fight on until it surrendered in Prague in May 1945.

Schwere Panzerjäger Ersatz 43 and Asbuildung Abteilung

These two units were originally used for training and as reinforcements and were stationed at Spremberg. In desperation, both units were mobilized in the defense of the Oder River, where both would be lost. The number of vehicles that these units had is unknown.

The use of Nashorn in other units.

Panzerkompanie Kummersdorf was formed using the vehicle present at the Kummersdorf Weapons Testing Center, including at least one Nashorn. An unknown number of Nashorns were allocated to the 1st Panzer Division in December 1944. They were used to reinforce Pz.Jg.Abt 37, which had lost most of its Marder anti-tank vehicles. By April 1945, there was still an unknown number of Nashorns operational with this unit. It is possible that at least 12 Nashorns were given to the Das Reich Division in late December 1944, but precise information is not available.
By the end of 1944, there were still some 130-165 operational Nashorns in total (depending on the source). Most were located on the Eastern front, with smaller numbers to the West.

Schwere Panzerjäger Abteilung/Kompanie 424

The origin of this unit is not clear, and depending on the sources it is either marked as an Abteilung or a Kompanie. What is known is that s.Pz.Jg.Ab 424 was mostly destroyed in early 1945 near the Kielce area. The remaining elements of this unit (with only two Nashorns) were used to defend the Order river.

Combat effectiveness

The Nashorn, due to its powerful gun, could engage any Allied or Soviet tank at great ranges. The best tactics when employing Nashorns was to select a good and well-camouflaged combat position some distance behind the main front line and with a good field of visibility. From such positions, its gun could destroy enemy armored vehicles with less danger from retaliation fire. Of course, this was the best-case scenario, which could not always be implemented due to many factors like terrain or inadequate leadership.
As the Nashorns would be thrown into areas with expected heavy clashes, the local commanders would sometimes used them in a role or in a way for which these vehicles were not designed and suitable for. This inevitably led to unnecessary losses. In order to provide many German units with strong anti-tank firepower, the Nashorn units were sometimes divided into smaller groups which reduced their combat potential. This also caused logistical and communication problems which could not be easily solved. Another problem was the positioning of these vehicles too close to the front or the inadequate scouting of enemy forces.
To address potential misuse of the Nashorn, instruction sheets were given to the troops (at the battalion level) of the 3rd Armee. These sheets included instructions on how to properly use the new Nashorns. It indicated that s.Pz.Jg.Ab was to be used as mobile defense units against mass enemy armor. They should be used as Abteilung or Kompanie strength, and to avoid distribution in smaller groups. This could cause many potential communication, ammunition and maintenance problems. Due to its weak armor, the enemy should be engaged at ranges greater than 1 km, and the Nashorn should never be used as an assault weapon (like StuG III for example). The Nashorn should attack enemy vehicles from well-camouflaged positions. The local commander should receive advice from the Nashorn commanders on the proper use of the vehicle.
Good cooperation between Nashorn units and the units they were attached to wasn’t always possible. There were situations when Nashorn commanders refused to execute the orders given to them by local commanders. This was the case of the Kompanie 521 (part of s.Pz.Jg.Ab 655), which refused to attack a well-defended position (with 20 to 30 tanks) while advancing over 2 km of open ground. The proper use of the Nashorns was demonstrated by the Zug from Kompanie 521, when on 3rd July, 12 KV-1s and 4 T-34s were destroyed with the loss of only one Nashorn. The Nashorns were well positioned and camouflaged, which played a great part in this action.

Due to its weak armor, the Nashorn provided only limited protection and could be easily destroyed by enemy fire. Source: Pinterest

The Nashorn’s best defense was a well-selected combat position and good camouflage. This vehicle belongs to s.Pz.Jg.Ab 525 (February 1944). Source.
Scouting was also essential for the Nashorn units, as they lacked any proper vehicles to do the job. Usually, the Nashorn commanders would go on foot to the designated area of attack. What is interesting is that (depending on the combat situation), the commanders of the Nashorn vehicles would give orders to their crew from outside the vehicle during a combat operation. This was done so that the Nashorn commander could have a better understanding on the current combat situation, in this instance, a key importance was that the commander had to be in close proximity of his vehicle. As the Nashorns were used mostly as fire support from the distance this was possible to be achieved without any major problems.
Thanks to its deadly gun, the Nashorn could effectively destroy enemy tanks from ranges above 2 km. In one case, it was reported that a T-34 was destroyed from a range of 4.2 km! It is important to note that the Nashorn would rarely engage at ranges greater of 2 km for several reasons. While the gun was powerful enough, there was a problem with potentially wasting precious ammunition, as the hit probability was significantly lower at such distances. Ammunition production could not reach the demands and the general low ammo count that could be carried inside the vehicle compounded this issue. Another problem was that the sights would be slightly knocked out of alignment during driving, which would affect the precision of the gun, especially at longer ranges. There are other facts that also had to be taken into account like the wind, the quality of ammunition, and a bit of luck etc. Hitting enemy vehicles at ranges of over 3 km was an exception rather than a rule, and in most cases, crews avoided shooting at these ranges.
One of the best known Nashorn aces was Lieutenant Albert Ernst who served with s.Pz.Jag.Abt.519. During the fighting on 19th December 1943, he and his crew managed to destroy 8 Soviet T-34s. Later that month, they destroyed another 14 T-34s tanks with just 21 rounds of ammunition. By 7th February 1944, he was awarded the Knight’s Cross for destroying 25 enemy tanks and many anti-tank guns. In the summer of 1944, he was transferred to s.Pz.Jg.Abt 654.

Conclusion

With the creation of the independent Schwere Panzerjäger Abteilung equipped with Nashorns, the Germans had units that could provide support and increase the offensive capabilities of any units attached to them. This also created some issues, the most common of which was the misuse of these vehicles by the local commanders.
During its operational use, the Nashorn proved to be an effective anti-tank vehicle with an excellent gun, but it was not perfect. The main drawback (like all similar German open-topped tank destroyers) was the lack of armor. It was also a relatively large vehicle and thus difficult to camouflage properly and suffered from a low ammunition count, and a small traverse arc. Another significant issue was constituted by the great number of engine breakdowns due to overheating.

Surviving vehicles

Today, there are only three surviving Nashorn vehicles. One is located in the Kubinka Museum in Russia and another one is at the U.S. Army Center of Military History Storage Facility. The third vehicle is a part of a private collection in the Netherlands. It was a fully operational vehicle, but was badly damaged in a fire in 2019, and is currently under restoration.

8.8 cm PaK 43/1 auf Fgst.Pz.Kpfw III und IV (Sf) Sd.Kfz. 16 specifications

Dimensions Length 8.44 m, Width 2.95 m, Height 2.94 m
Weight 24 tonnes
Armor Hull front 30 mm, side and rear 20 mm, top and bottom 10 mm,
Superstructure 10 mm all around and the gun shield 10 mm.
Crew 5 (Gunner, loader, driver, radio operator and commander)
Propulsion Maybach HL120TRM
Speed 40 km/h, 15-28 km/h (cross country)
Range 260 km, 130 km (cross country)
Armament 8.8 cm PaK 43/1 L/71
Gun Traverse 30°
Elevation -5° to +20°
Total production 394

Sources

Thomas L.J and Hilary L.D. (2006), Panzer Tracts No.7-3, Panzerjager Panzer Tracts
David Doyle (2005), German Military Vehicles, KP Books
Alexander Ludeke, Waffentechnik im Zweiten Weltkrieg, Parragon books
Duško Nešić, (2008), Naoružanje Drugog Svetsko Rata-Nemačka, Beograd
Peter Chamberlain and Hilary Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
Tony G. and Detlev T. (2000) Nashorn 8.8 cm PaK 43/1 (L/71) auf Fgst.Pz.kpfw.III/IV (Sf), Nuts and bolt Vol. 14
Janusz L. (2010) Nashorn, Tank power Vol. XCIII, Wudawnictwo Militaria.
Ian V. Hogg (1975). German Artillery of World War Two, Purnell Book Services Ltd.
Peter C. and Terry G. (2008) Enzyklopadie Deutscher waffen 1939-1945 Handwaffen, Artilleries, Beutewaffen, Sonderwaffen.

Pictures:


Crew working inside the Nashorn. The crew member on the right, behind the gun, is the gunner. Behind him, on the left of the image, are the commander and, in the foreground, is the loader. The 88 mm horizontal sliding block mechanism is seen here. Source.

The large size of the 88 mm ammunition is evident here. Source.

When not expecting to go into action, the gun opening was covered in order to avoid getting dust into the chamber. Source.

Rearview of an earlier production vehicle. The large wheel inside the crew compartment was a part of the rear travel lock mechanism. Later built vehicles did not have this system. Source.

Categories
WW2 German Tank Destroyers

Panzer IV/70 (V)

ww2 german tanks Nazi Germany (1944) Tank Destroyer – 930-950 built

During the Second World War, the Germans developed a large number of different Jagdpanzer designs. Some of these were hastily designed and made, some were temporary solutions, and there were also those which were specifically designed for the role of Jagdpanzer. The latter is the case with the late-war Panzer IV/70 (V). It was well protected, armed with a powerful gun and, with a low profile, it proved to be a deadly weapon. However, the effect of this vehicle on the battlefields of Europe in 1944 was limited, as production began late that year and very few reached the front lines.

First Jagdpanzer Designs

Even before the war, the famous German commander Heinz Guderian had predicted the need for highly mobile self-propelled anti-tank vehicles later known as Panzerjäger or Jagdpanzer (tank destroyer or hunter). The terms Jagdpanzer and Panzerjäger were, according to Germany military terminology and concepts, essentially one and the same. After the war, however, the Jagdpanzer term would be used to describe the fully enclosed tank destroyers while the Panzerjäger would be used for the open-topped tank destroyer vehicles.
In March of 1940, the first attempt to build such a vehicle was made. This was the 4.7 cm PaK (t) (Sfl) auf Pz.Kpfw. I, generally known today simply as the Panzerjäger I. It was more or less a simple improvisation, made by using a modified Panzer I Ausf.B tank hull and by mounting a 4.7 cm PaK (t) with a small shield on it. Later, during the attack on the Soviet Union and the battles in North Africa, the need for effective anti-tank vehicles became of greater importance for the Germans. The appearance of the towed 7.5 cm PaK 40 in increasing numbers somewhat solved this problem, but the main issue with this gun was its lack of mobility.
The need for a mobile anti-tank vehicle would lead to the development of the “Marder” series, which was based on several different tank chassis and armed with powerful and efficient anti-tank guns. Captured tanks and other vehicles would also be reused for this purpose. In 1944, the Nashorn, armed with the excellent 88 mm Pak 43, was put into production. But most of these vehicles were hastily designed and built and, while they did the job, they were far from perfect. These vehicles were built by using different tank chassis and installing a gun with a limited traverse in an open-topped superstructure. The two main issues were the great height, which made them extremely difficult to camouflage, and the general lack of an effective armor design.
The German infantry support self-propelled assault gun, the Sturmgeschütz, or simply StuG, (based on the Panzer III) proved to have great potential when used as Jagdpanzers. They had relatively good armor, a low profile, and could be armed with the longer barrelled 7.5 cm gun. The mass-produced StuG III Ausf.G armed with the longer 7.5 cm gun (L/48) was able to efficiently fight almost any Allied tank up to the end of the war. The StuG vehicles were also much easier to build than any German tank. In 1942, the first plans to equip the StuG with a stronger gun and armor were made. These would eventually lead to the development of the Panzer IV/70 (V) in late 1944.

Early Development of the Jagdpanzer IV

The story of the Panzer IV/70 (V) actually began in September 1942, when the Waffenamt issued a request for developing a new design of Sturmgeschütz – the Neuer Sturmgeschütze (or ‘Sturmgeschütze neue Art’ depending on the source) series. It was to be armed with the 7.5 cm KwK L/70 gun and protected with 100 mm frontal and 40 to 50 mm of side armor. It was intended to have the lowest possible height, a top speed of 25 km/h and a weight of up to 26-tonnes. According to original plans, a completely new chassis was to be developed but, due to the lack of industrial capacity, the Panzer IV tank chassis was chosen instead. During 1942, there were many tests of different designs for the new Jagdpanzer based on the StuG III design. At the same time, the firm of Alkett tested the installation of the StuG III superstructure on the Panzer IV tank chassis armed with the 7.5 cm L/70 gun (Gerät No.820). One was also fitted with a 10.5 cm gun and there was even a proposal to test the installation of an 88 mm gun. As this modification proved to be somewhat complicated and was not feasible for production in the near future, a new solution was needed. There were also proposals to combine some components from the Panzer III, IV, and the VK16.02 ‘Leopard’, but nothing came of this.
More extensive work on a new vehicle (based on the Panzer IV Ausf. H tank chassis) was carried out by the Vogtlandische Maschinenfabrik AG of Plauen (VOMAG) in early 1943, under the designation Gerät No.821. The wooden mockup was completed by May 1943 and the final prototype was ready by end of the same year. Adolf Hitler liked the new Jagdpanzer IV design and ordered that mass production should begin as soon as possible.
As already mentioned, the Jagdpanzer IV was based on the Panzer IV tank chassis with the turret and the top of the hull removed and replaced with a simple, easy to build, but highly-angled armored hull. The rear engine compartment was almost the same with minimal changes (the engine was also the same) but the original plans for the armament and armor had to be changed. There were inadequate numbers of the 7.5 cm L/70 guns available for the design, so the shorter L/48 had to be used instead. The maximum front armor was 60 mm instead of 100 mm but placed at a high angle which provided good protection.
In general, this vehicle had more or less the same operational combat characteristics as the already produced StuG III anti-tank version. Both had the same gun, but the Jagdpanzer IV had a more effective and much simpler armor design. While an effective tank destroyer, it could be considered a waste of time and resources as the StuG III did the same job and was already in production. Even the Inspector-General of the Panzertruppen, Heinz Guderian, was against the new Jagdpanzer IV vehicle from the start, due to it being so similar to the StuG III and as it was draining significant and necessary resources needed for the Panzer IV production.

The Jagdpanzer IV was armed with a 7.5 cm PaK 39 L/48 and protected with 60 mm frontal armor. Source
The Jagdpanzer IV would be produced from January to August of 1944 with some 769 to 784 vehicles built. The production was stopped in August as the new better armed and armored Panzer IV/70 (V) version was ready for production.

The Development History of the Panzer IV/70 (V)

In a conference held in late January 1944, Hitler himself urged for future development and rearmament of the Jagdpanzer IV with the more powerful 7.5 cm L/70 gun. Vomag was responsible for the implementation and realization of this task. One Jagdpanzer IV prototype (serial num. 320162) was rearmed with the 7.5 cm L/70 StuK 42 (SturmKanone) (also known as Pak 42 (PanzerabwehrKanone) gun) and had its frontal armor increased from 60 mm to 80 mm for testing in early 1944. These tests proved that the installation of the new gun in the Jagdpanzer IV was feasible and without major complications.
Photographs of this prototype were presented to Hitler in early April 1944, and the prototype vehicle was demonstrated to him on 20th April 1944 (his birthday). Hitler was excited about this vehicle and immediately ordered the beginning of mass production with some 800 Panzer IV/70 (V) vehicles per month. These numbers were never achieved, and the greatest monthly production reached just 185 vehicles.

This is the Panzer IV/70 (V) prototype (Fgst.Nr. 320162), it can be identified by its front rubber wheels, different gun mantlet design and by the added welded round armor plate over the left mounted machine gun port. The Panzer IV/70 (V) prototype at first did not have the gun travel lock but, due to the gun weight, it was later added. Source
At the same time, Alkett made attempts to increase the number of produced vehicles by making the whole superstructure design simpler and easier for production. This vehicle was known under the designation Panzer IV/70 (A), but only 278 would be built.
In July 1944, Hitler gave orders to terminate the Panzer IV production in favor of the Panzer IV/70 (V) and Panzer IV/70 (A) based on the fact that the Panzer IV was reaching its developmental peak and had few options available for improving its overall performance. The whole conversion process was to be completed by February 1945. As the German army was lacking sufficient numbers of operational tanks, this order was never fully implemented and the Panzer IV remained in production until the end of the war.

The Panzer IV/70 (V) was essentially the same vehicle as the Jagdpanzer IV but had thicker frontal armor and was armed with the longer gun. Source

Origin of the Panzer IV/70 (V) Name

By Hitler’s direct orders from 18th July 1944, this vehicle was officially designated as Panzer IV lang (V). The capital letter ‘V’ is for the vehicle’s manufacturer and designer, Vomag. In order to avoid any confusion with Panzer IV tanks and the previous L/48 tank hunter version, the German troops on the front referred to this vehicle as Panzer IV/70 (V) (the number 70 stood for the barrel length) and this designation was even officially adopted by the Heeres Waffenamt in November 1944. In some sources, this vehicle is also known as Jagdpanzer IV/70 (V). According to some sources, due to the vehicle’s slower speed and movement, the crews gave this vehicle the nickname “Guderian Ente” (Guderian’s Duck). It should be noted that, in German, ‘Ente’ not only means duck, but also urine bottle, which is also claimed to have been the reason the Panzer IV/70V received the name “Guderian Ente”.

Specification

Visually, the Panzer IV/70(V) was almost the same as the previous Jagdpanzer IV version, the most obvious difference being the length of the main gun and the added travel-lock. The Panzer IV/70(V) was built by using the Panzer IV tank chassis (some Ausf. H but mostly Ausf. J), which was, for the most part, unchanged.
The lower front hull was redesigned and had a more sharply angled shape. The transmission and the two steering brake inspection hatches remained, but the brake inspection hatches were square shaped and smaller than on the Panzer IV tank. During the Panzer IV/70 (V) production run the air intake vents on the brake inspection hatches were removed.
The suspension and running gear were the same as those of the original Panzer IV, with no changes to their construction. They consisted of eight small road wheels (on each side) suspended in four pairs by leaf-spring units. There were two front drive sprockets, two rear idlers and eight return rollers in total. The numbers of return rollers was reduced to three per side later in the production run and replaced with steel ones. As the vehicle proved to be nose-heavy, the front two road wheels were prone to being rapidly worn out or, in some cases, they even malfunctioned. To solve this problem, most vehicles were to be equipped with two (or more) steel-tired and internally sprung wheels, from September 1944 onwards. From February/March 1945, on some vehicles, the rear idler was replaced with a cast one which was easier to make. The ground clearance was increased to 40 cm. If needed, the normal tracks could be replaced with wider ‘East tracks’ (Ostketten).
The engine was the Maybach HL 120 TRM which produced 265 hp@2600 rpm. The design of the engine compartment was unchanged. Maximum speed was 35 km/h (16 km/h cross country) with an operational range (with 470 l fuel) of 210 km. From September 1944 on, these vehicles were fitted with new flame dampening exhausts and mufflers (flammentoeter). The engine and the crew compartment were separated by a fire resistant and gas-tight armored firewall. In order to avoid any fire accidents, an automatic fire extinguisher system was installed in the engine compartment.
The Panzer IV/70 (V)’s new superstructure was well protected with its angled, thick and simple armor design. The angled shape of the superstructure provided thicker nominal armor and also increased the chance of deflecting enemy shots. This way, the need for more carefully machined armored plates (like on Panzer III or IV) was unnecessary. Also, by using larger one-piece metal plates, the structure avoided a lot of welding making it much stronger and also easier for production. The Panzer IV/70 (V) upper hull was built out of surface-hardened steel plates (Type E 22) manufactured by Witkowitzer Bergbau und Eisenhütten.
The Panzer IV/70 (V) upper front hull armor plate was 80 mm thick at a 45° angle, and the lower plate was 50 mm at a 55° angle. The side armor was 30 mm, the rear 20 mm and the bottom was 10 mm. The hull crew compartment had 20 mm of bottom armor. The upper superstructure frontal armor was 80 mm at a 50° angle (or 40° according to some sources), the sides were 40 mm at a 60° angle, the rear armor was 30 mm, and the top was 20 mm. The engine compartment design and armor was unchanged with 20 mm all around and 10 mm of top armor. Additional 5 mm thick armor plates were also provided for extra protection of the engine compartment sides.
The Panzer IV/70 (V) could be equipped with additional 5 mm thick armor plates (Schürzen) covering the side of the vehicle. In practice though, these would rarely last long and would simply fall off the vehicle during combat operations. Due to material shortages, by late 1944, stiff wire mesh panels (Thoma Schürzen) were used instead of the armor plates. These were much lighter and easier to make and most sources claim that it provided the same level of protection as the solid type. It is often mentioned that Schürzen were designed as protection against shape-charged weapons but they were actually designed to counter Soviet anti-tank rifle projectiles. Moreover, Steven Zaloga points out in ‘Bazooka vs. Panzer’ that a unit from the American 1st Armored Group in the Sarrebourg area tested the Bazooka against one Panzer IV equipped with stiff wire mesh panels similar to the Thoma Schürzen. The tests showed that the wire mesh panels did not offer any protection against shape-charged weapons.
One more line of protection was the possible application of Zimmerit anti-magnetic paste to counter magnetic anti-tank mines, but the use of this paste would be abandoned in the late stages of the war.

The Schürzen side plates, added for extra protection, can be observed in this photo, as well as the vehicle’s small size. The gun lock, in this case made out of solid metal, is also noticeable. Source
The Panzer IV/70 (V) tank destroyer’s main armament was the 7.5 cm StuK 42 L/70 cannon, also known as the 7.5 cm PaK 42 L/70. This gun was more or less the same one used on the German Panther tank. The elevation of the 7.5 cm StuK 42 L/70 was from –5° to +15° and the traverse was 20°. The main gun was not placed at the vehicle’s centre, but was instead moved some 20 cm to the right side. One 80 mm thick cast gun mantlet acted as extra protection for the gun. The main weapon was produced by Gustloff-Werke (Weimar) and Škoda (Pilsen). A hydro-pneumatic equilibrator was provided for better gun balance and one iron counter-weight was added at the end of the recoil guard. To avoid damaging the main gun when on the move, a heavy travel-lock was provided. In order to free the gun, the gun operator had only to elevate the gun a bit and the travel lock would fall down. This allowed for a quick combat response but also avoided the need for a crew member to exit the vehicle in order to do it manually.
The main gun was not equipped with a muzzle brake. The first Jagdpanzer IV produced were equipped with muzzle brakes but, during combat action, the crews often removed them due to the dust clouds created during firing. This reduced the visibility but more importantly gave away the vehicle’s position to the enemy. From May 1944 on, the muzzle brake was removed from production and this would be also carried on with the later Panzer IV/70 (V). As this gun required a large amount of room and the use of large one-piece ammunition, the Panzer IV/70 (V) interior was very cramped and the ammunition capacity was only 55 rounds (or 60 depending on the source). Around 34 were armor-piercing (AP) (PzGr 39/42 or 40/42), while the remaining 21 were high-explosive (HE) (SpGr 42). The ammunition was stored along both wall sides and held in ammunitions racks.
The secondary weapon used was the MG 42 machine gun with some 1,200 rounds of ammunition. Unlike most other German vehicles, a ball mount was not used on this vehicle. The machine gun port was instead protected with a movable hemispherical-shaped armored cover. The machine gun mount was located to the vehicle’s right side. The Panzer IV/70 (V) was also equipped with the Nahverteidigungswaffe (close defense weapon) with some 40 or more rounds of ammunition, located on the vehicle top and covered with a round armored cover.
Unknown numbers of late built vehicles were equipped with the ‘Vorsatz P’ curved muzzle attachment for the MP 43/44 (7.92 mm) assault rifles. The mounting for this weapon was placed on the loader’s hatch door and was operated by him. The last line of defense was the crew’s personal weapons.

The Vorsatz P curved muzzle attachment for the MP 43/44. Source
The four-man crew consisted of the commander, gunner, loader/radio operator, and the driver. The driver’s position was on the vehicle left front side but his view of the surrounding area was limited as he only had a front mounted periscope and a small periscope pointing to the right to see out of. Behind him was the gunner’s position, which was provided with an Sfl.ZF 1a gun sight for acquiring targets. This sight was linked to an Azimuth indicator, the purpose of which was to tell the gunner the precise and current position of the gun. When in use, the sight was projected through the sliding armored cover on the vehicle’s top armor. For operating the gun, there were two traverse hand wheels. The lower wheel was for the traverse and the upper one for the elevation. The gunner was also provided with a recoil shield, while the loader was not.
Behind these two was the commander’s position, which had a rotating periscope located in the escape hatch and one pointing to the left. The commander had a small additional hatch door for the use of a retractable Sfl.4Z telescope. The commander was also responsible for providing the loader with the ammunition located on the left side wall.
The last crew member was the loader, who was positioned on the vehicle’s right side. He operated the radio (Fu 5 radio set) which was located to the right rear and he also doubled as the MG 42 machine gun operator. There was a small opening located above the machine gun which provided the gun operator with a limited view of the front. When not in use, the machine gun could be pulled into a small travel lock which was connected to the vehicle’s roof. In that case, the machine gun port could be closed by pivoting the hemispherical-shaped armor cover. The use of this machine gun type is strange, as the usual hull mounted machine gun in all German armored vehicles was the MG 34. Nearly all periscopes were protected with an armored flap cover.
The crew could enter the vehicle through two hatches located at the top of the vehicle. There was an additional floor escape hatch door that could be used in case of emergency.
In the hope of removing any extra weight at the front, most spare parts and ancillary equipment were moved to the rear engine compartment. These included things such as spare tracks, wheels, repair tools, the fire extinguisher and crew extra equipment. Some vehicles had an armored and welded base for a 2-tonne crane added on the superstructure roof. The rear tow bars were changed with vertically positioned ones.
The dimensions were: length 8.5 m, width 3.2 m, and height 2 m (or length 8.58 m, width 3.17 m, and height 1.85 m according to other sources). Total combat weight was around 25.8 metric tons.


Two Panzer IV/70 (V) abandoned on the battlefield. The one in the background has a white sheet hanging from the gun. Source

Panzer IV/70 (V) Befehlswagen

An unknown number of Panzer IV/70 (V) were modified to be used as Befehlswagen (command vehicles). These vehicles had additional radio equipment installed, the FuG 8 30 radio station (30 W power) with an operational range of 80 km. The extra equipment was positioned behind the loader and was to be operated by an extra crew member (but some sources do not mention the fifth crew member). The Befehlswagen would also use a Sternantenne (star radio antenna) which was 1.4 m long and located on the left side of the engine compartment.

Production

Production was carried out by Vomag and, from November 1944 through April 1945, some 930 vehicles were built. Maximum production was achieved in January 1945, with 185 completed vehicles that month. Due to the bad situation in Germany, the production dropped rapidly in February to 135 vehicles, and dropped further to only 50 vehicles produced in March. The last 10 vehicles were to be completed in April, but it is possible that this was never achieved.
Like many other German military vehicles, authors cannot agree on precise production numbers. Most quote the figure of 930, while some, like Hilary Louis Doyle, quote 950 produced vehicles. According to Duško Nešić, some 940 were built, whereas Krzysztof M. and George P. estimate that between 930 to 940 vehicles were produced.

Organization

The Panzer IV/70 (V) would be used to equip many different German units. For Panzer and Panzer Grenadier Divisions, they were grouped into Panzerjäger Abteilungs. The Panzerjäger Abteilung usually had two Panzerjäger Companies. These Panzerjäger Companies were to be equipped with 10 to 14 Panzer IV/70 divided into three Platoons, with one to three vehicles assigned to the Company HQ. As the Panzer IV/70 did not reach the front in great numbers, these units were often below the officially prescribed combat strength.
The Panzer IV/70 (V) was also used to equip Kampfgruppen (Combat/battle groups). As ordered by Adolf Hitler (on July 2nd, 1944), small armored Kampfgruppe were to be formed. These would later be renamed to Panzer Brigaden. These groups were to be equipped with 30 to 40 tanks and self-propelled guns. As the Panzer IV/70 began to become available in sufficient numbers, it was also included in these units.

Although these vehicles were designed as tank destroyers with thick armor, their best defense was a well-selected and camouflaged position. Source

Jagdpanzer tactics

The term Jagdpanzer could be somewhat misleading. Despite the good frontal protection and the strong gun (in the case of this vehicle), its job was not to go on offensive hunts, either in the open or in urban areas, for enemy tanks. The Jagdpanzers were more of a defensive weapon concept, and their primary mission was to engage (if possible in great numbers) enemy tanks and to act as fire support at long ranges from carefully selected and well-camouflaged combat positions, usually on the flanks.
In offensive operations, they would support Panzer units from a safe distance and on the flanks. If the attack was successful, they were to move to new combat positions. In case of a failed attack or even in false retreat, they were to form a firing line in order to trap and destroy any enemy advancing armor units.

This vehicle, belonging to the 1st Panzerjäger Abteilung (1st Panzer Division), was pictured on the Western front in late 1944. Source
In support of the infantry, once the objective was captured, they were to remain there until that location was secure from any imminent enemy counterattack. After this was achieved, they were to return to the rear and wait for future orders. In the case of enemy attacks, they were to provide long-range support fire against enemy heavy armor. In retreats, the Jagdpanzers would be used to form defensive positions in the new rear lines.
Engagement with enemy tanks at close range (especially from the sides) was very dangerous for such vehicles, as they lacked a fully traversing turret, meaning they could not quickly respond to enemy movements. For example, in urban (especially in destroyed cities) areas, the lack of a fully traversing turret could prevent them from engaging enemy armor that got too close, as these hostile tanks had a clear advantage with their turret. Despite the Panzer IV/70 (V)’s excellent frontal armor, the sides and rear were weak. The greatest defense was a well-selected combat position, which any good Jagdpanzer commander had to learn to take advantage of.

A heavily destroyed Panzer IV/70 (V). This was likely the result of an internal explosion. Source

In combat

The first units to be equipped with the new Panzer IV/70 (V) were the 105th and 106th Panzer Brigades in early August 1944. These two units were engaged against Allied forces on the Western Front. These were followed (also in August) by the 11.Abt. Panzer Regiment “Großdeutschland” Führer Begleit Brigade, 107th Panzer Brigade, Führer Grenadier Brigade, 109th Panzer Brigade. 110th Panzer Brigade, each equipped with 11 Panzer/70 (V) vehicles.
Despite the production of nearly 1000 vehicles, the distribution process to the front line units was too slow. This was mostly due to the increased number of Allied bombing and ground attack actions in Germany, which caused huge problems for transporting these vehicles (and any other) to the front. The Panzer IV/70 (V) began to reach front line units in great numbers only from January 1945 on, and by that time, it was too late. The largest concentration of Panzer IV/70 (V) (137 vehicles) for one combat action was during the last German offensive operation on the Western front, during the fighting in the Ardennes in December of 1944.
While the Panzer IV/70 (V) was a tank destroyer, it was also sometimes used in other roles, such as an assault gun. When acting in this role without infantry support, it proved to be an easy target for enemy anti-tank (bazooka armed) teams, as shown during an attack on the Krinkelt-Rocherath villages. The Panzer IV/70 (V) from the 12th SS Panzerjäger Abteilung (12th SS Panzer Division “Hitlerjugend”) were used to attack elements from the American 2nd Infantry Division which was defending the Krinkelt-Rocherath villages and the Lausdell crossroads. The first attacks on the American position at Lausdell crossroads were made with the support of two Panzer IV/70 (V) companies on 17th December 1944. The Americans had no armor available at this point, but had artillery support and placed large numbers of anti-tank mines. During the attack on the Lausdell crossroads, several Panzer IV/70 (V) (from the 2nd Company) were leading the attack supported by small Panzergrenadier infantry groups, which were hiding on the Panzer IV/70 (V) engine decks. Once the German vehicles were spotted, they were immediately bombarded by the American artillery. One vehicle was destroyed by an artillery hit, and two were immobilized by mines. One immobilized vehicle was firing at the American positions, but was eventually destroyed with a combination of thermite grenades and a fuel canister. Two more Panzer IV/70 (V) were destroyed by bazooka teams. After regrouping, the Germans repeated the attack later that day but it was met with heavy artillery fire and between four to seven armored vehicles (of an unknown type) were reported destroyed. One last attack attempt was made at 22.30 hrs, but with the support of artillery, this attack was also repulsed.
The following day, the Germans attacked the Krinkelt-Rocherath villages with elements from the 12th SS Panzerjäger Abteilung 2nd company with the support of SS Panzergrenadier 25th Regiment. The American positions guarding the first line defense trenches were overrun. The Panzer IV/70 (V) that entered the village managed to destroy three M4 tanks. There was heavy fighting that lasted the whole day, but the Germans withdrew the next morning expecting reinforcements and supplies. The next day they continued with the attacks, but, in the end, they could not breach this line and suffered heavy losses (one Panzer IV/70 (V) was lost together with several Panzer IV and Panther tanks). The 12th SS Panzerjäger Abteilung, at the start of the Ardennes offensive, had 22 Panzer IV/70 (V) but had lost three vehicles with seven damaged, although they were subsequently recovered and repaired.

Behind the left Panther we can see a Panzer IV/70 (V) lost during the battle for the Krinkelt-Rocherath villages. Source

The Americans used a captured Panzer IV/70 (V) during the winter of 1944/45 to test the effectiveness of bazookas. While the front armor proved impervious, the sides and the rear were vulnerable to this weapon.
The Panzer IV/70 (V) also saw some heavy action on the Eastern Front, where it also proved to be an effective tank destroyer, as in the case of schwere Panzerjäger Abteilung 563. The schwere Panzerjäger Abteilung 563 received 18 Jagdpanthers and 22 Panzer IV/70 (V) divided into two companies on 20th January 1945. The next day, this unit was sent to Allenstain in Poland. The 563rd participated in heavy fighting in Poland, where it claimed to have destroyed some 58 enemy tanks with the loss of four Panzer IV/70 (V) and one Jagdpanther during a period of 10 days. By the beginning of February 1945, this unit was a mere shadow of its former strength with only 5 Jagdpanthers and 3 Panzer IV/70 (V) left. All remaining vehicles had to be abandoned or destroyed by their crews due to a lack of fuel, spare parts and the muddy terrain.
Over thirty different German units were equipped, usually with about 11 such vehicles each. These would be used to support many German front line Divisions, including 2nd SS Panzer Division, 1st SS Panzer Division, 7th, 8th, 13th, and 21st Panzer Divisions, 20th Panzergrenadier Division, Panzer Abteilung “Jüteborg”, 510th Heeres Panzerjäger Abteilung and others.
Some StuG-equipped units (Sturmgeschütz-Abteilung) were reinforced with IV/70 (V) vehicles, like the 226th and 210th Sturmgeschütz-Abteilung. There was also a last-ditch attempt to form a mixed company equipped with Panzer IV/70 (V) and (A) prototypes at Kümmersdorf on 15th February 1945. One of the last units to receive 10 new built Panzer IV/70 (V) was the 33rd Panzer Regiment from the 9th Panzer Division on 17th April 1945.
By early April 1945, the German Army had around 285 operational Panzer IV/70 (V). Nearly all were stationed on the Eastern Front (274), while only small numbers were stationed on the Western Front (8) and only three in Italy.
By late 1944, there was a general lack of Panzers, so the Germans were forced to use the Jagdpanzers as replacement vehicles instead. The Panzer IV/70 (V) suffered losses as it was often used in the role of Panzer, a role for which it was not suited nor designed for. But as there were no other solutions, something was better than nothing.

A Soviet T-34-85 passes by a destroyed Panzer IV/70 (V) somewhere on the Eastern Front in March 1945. Source

Other IV/70 (V) operators

The Bulgarians, after changing sides in September of 1944, immediately began attacking their former German ally. In March 1945, their armored force was supplemented with one captured Panzer IV/70 (V) (Ser. Num. 320662) supplied by the Soviets. In Bulgarian service, this vehicle was known under the Maybach T-IV name. This vehicle still exists to this day and can be seen at the National Museum of Military History in Sofia.
Unknown numbers of captured Panzer IV/70 (V) were supplied to the Romanian army by the Soviet Union (possibly after the war). In Romanian service, they were known under the TA T-4 designation and remained in service until 1950, when they were replaced with more modern Soviet equipment. TA was an abbreviation for ‘Tun de Asalt,’ (Assault Gun) and T-4 was the Romanian designation for the Panzer IV.
After the war, Syria received a number of older German captured armored vehicles including unknown numbers of Panzer IV/70 (V) and Jagdpanzer IV. These were supplied by the Soviets and they saw action during the Six Day War.

One Panzer IV/70 (V) was given to the Bulgarians by the Soviets. In Bulgarian service, this vehicle was known under the Maybach T-IV name. Source: Matev

Surviving vehicles

A small number of Panzer IV/70 (V) survive to this day and can be seen in several museums around the world. One can be found in the capital city of Bulgaria, Sofia, one in Shrivenham in the UK, two in the USA (Patton Museum and Aberdeen Proving Grounds), one in Canada (Ottawa), and one at Kubinka (Russia). One more can be found in Syria.

Conclusion

Despite the issue with its weight, the Panzer IV/70 (V) proved to be a dangerous and effective anti-tank weapon as it could destroy all Allied armored vehicles from great ranges. It had a very low profile which made camouflaging it a very easy task. The strong frontal 80 mm angled armor provided efficient protection from enemy fire, especially from a distance.
But, on the other hand, it was built too late and in insufficient numbers to have any large impact on the War. The late introduction and long development time of this vehicle also disrupted the production of the much needed Panzer IV tank, which the Panzer IV/70(V) was sometimes forced to replace in combat, being used as a tank despite being unsuitable for the purpose.

Another destroyed Panzer IV/70 (V) somewhere on the Western Front. Source

Specifications

Dimensions (L-W-H) 8.5 x 3.2 x 2 meters
Total weight, battle ready 25.8 tonnes
Armament 7.5 cm StuK 42/ PaK 42 L/70 and one 7.92 mm MG 42
Armor Hull front 80 mm, side 30 mm, rear 20 mm and bottom 10-20 mm
Superstructure front 80 mm, side 40 mm top and rear 20 mm
Crew 4 (driver, commander, gunner, loader)
Propulsion Maybach HL 120 TRM, 300 hp (221 kW), 11.63 hp/ton
Speed 35 km/hr, 15-18 km/hr (cross country)
Suspension Leaf springs
Operational range 210 km (130 mi)
Total production 930 – 950

Source

David Doyle (2005), German military Vehicles, Kp Books
Janusz L. (2002) Panzer IV/70 (V), Militaria.
Krzysztof M. and George P. (2001), Jagdpanzer IV L/48, Kagero Lublin
Alexander Ludeke, Waffentechnik im Zeiten Weltrieg, Parragon books
Duško Nešić, (2008), Naoružanje Drugog Svetsko Rata-Nemačka, Beograd
Thomas L. Jentz (1997), Panzer Tracts No.9 Jagdpanzer, Darlington Production Inc.
Bryan P. (2003) Sturmartillerie and Panzerjäger 1939-45, Osprey Publishing
Terry J. G. (2004), Tanks in Detail JgdPz IV, V, VI and Hetzer, Ian Allan Publishing
Surviving Pz.IV Variants (2018)
Peter Chamberlain and Hilary Doyle (1978) Encyclopedia of German Tanks of World War Two – Revised Edition, Arms and Armor press.
Walter J. Spielberger (1993). Panzer IV and its Variants, Schiffer Publishing Ltd.
Warmachines No. 17 Jagdpanzer IV/70 Military Photo File, Verlinder Publications
Steven Z. (2016) Bazooka Vs. Panzers Battle for the Bulge, Osprey Publishing
Thomas L. Jentz (2005) Panzer Tracts No.9-3 Jagdpanther, Panzer Tracts publications
Adrian S. Gheorghe B. (2010) Artileria Română în date și imagini, Editura Centrului Tehnic-Editorial al Armatei.
Matev, K. (2000). Bulgarian Armored Vehicles 1935-1945. Angela Publishing.



Late-type Panzer IV/70(V) based on the Panzer IV Ausf.H, 13th Panzer Division, Hungary, January 1945.


Early type Panzer IV/70(V) in winter camouflage, Hungary, possibly January 1945.


Panzer IV/70(V), late version, 1st SS Panzer Division, Hungary, 1945.


Panzer IV/70(V), late version, 13th Panzer Division, Hungary, January 1945.

Categories
WW2 German Tank Destroyers

Panzerjäger 38(t) für 7.62 cm PaK 36(r) (Sd.Kfz. 139) Marder III

Nazi Germany (1942-43)
Tank Destroyer – 344 Built

As the German armored forces advanced on all fronts in 1940 and 1941, they encountered many different enemy tank types that were almost immune to guns of their Panzers. In France it was the B1 bis and the British Matilda (when the Germans met the first Matildas at Arras, it was a very unpleasant shock), in the Soviet Union were the famous the T-34 and the heavy KV-series, and in Africa again (in larger numbers) the Matilda tank. While they were able to defeat these by various means, the Germans were pressed to find a better way to combat these threats. The newly developed towed anti-tank guns (like the PaK 40 built in 1942) could efficiently destroy these tanks, but they were not suitable for offensive operations. A logical solution was to try to mount these towed anti-tank guns on a tank chassis and thus solve problem of mobility, and so the new Panzerjäger’s were born.
These new vehicles followed the same pattern: most were open-topped, with limited traverse, and thin armor. They were, though, armed with an effective anti-tank gun, and usually with one machine gun. They were also cheap and easy to build. Panzerjäger’s were, in essence, improvised and temporary solutions, but effective ones nevertheless. Just as the name suggests (tank hunter), they were designed to hunt down enemy tanks at long range on open fields. Their primary mission was to engage enemy tanks and to act as fire support at long range from carefully selected combat positions, usually on the flanks. This mentality led to a series of such vehicles named ‘Marder’ that was developed using many different armored vehicles as a base.

A canvas cover was often installed over the fighting compartment and used to protect the crew from bad weather. It offered no real protection during combat. Source:www.worldwarphotos.info

Panzer 38 (t)

The TNH – LT vz.38 tank was developed and built by the Czech ČKD company (Českomoravska Kolben Danek) in the second half of the nineteen-thirties. Production of the vz. 38 began in late 1938 but, by the time of the German annexation of Czech territory, not a single tank was handed over to the Czech army. Germany captured many brand new vz.38 tanks and, in May 1939, a delegation was sent to the ČKD factory to examine their operational potential. The Germans were so impressed with this tank that they were quickly introduced into Wehrmacht service under the name Pz.Kpfw.38(t) or simply Panzer 38(t). The ČKD factory was completely taken over for the needs of the German army under the new name BMM (Bohmisch-Mahrische Maschinenfabrik).
The Panzer 38(t) was built in relatively large numbers, saw combat action from Poland to the end of the war and was considered an effective tank for its class. But, from late 1941 on, it became obvious that it was becoming obsolete as a first line combat tank. The Panzer 38(t) chassis, on the other hand, was mechanically reliable and was highly suitable for use for other purposes, a fact which the German exploited to the maximum. Many different armored vehicles were built using the Panzer 38(t) chassis including many Panzerjager versions, like the Marder III armed with a modified Russian 7.62 cm field gun (M1936).

Heavy camouflage and a well selected combat position was necessary for the crew’s survival. Source:www.worldwarphotos.info

Panzerjäger 38(t) für 7.62 cm PaK 36(r) (Sd.Kfz. 139) ‘Marder III’

The need for such a vehicle became obvious during the first year of Operation Barbarossa (the German invasion on the Soviet Union), when German ground forces encountered the T-34 and the KV tanks. Fortunately for the Germans, they captured large numbers of the 7.62 cm field gun (M1936) which had good anti-tank firepower. This gun was immediately put to use by the German ground forces, but mobility was an issue, so an idea appeared to install this gun on tank chassis in order to increase its mobility.
The Panzer 38(t) armed with this Soviet gun was named 7.62 cm PaK36 (r) Pz.Kpfw.38(t) ‘Marder III’ Sd.Kfz.139 or Panzerjager 38(t) fur 7.62 cm PaK 36(r) Sd.Kfz.139 ‘Marder III’ depending on the source.

Construction

The Panzer 38(t) chassis and the running gear were almost unchanged. The suspension was also the same as the original, consisting of four large road wheels (connected in pairs to a central horizontal spring). There were two front drive sprockets, two rear idlers, and four return rollers in total (two on each side).
The design of the engine compartment was also unchanged. The first series of Marder III built were based on the Ausf.G tank chassis and were equipped with the Praga EPA (125 hp) six cylinder engine, but later models (built using the Ausf.H tank chassis) had a stronger Praga AC (150 hp) six cylinder engine. Both engines were connected to a transmission that had five forward and one reverse gears. Two starters were installed, one was electric and the second was an inertial starter located in the rear of the vehicle. Top speed was around 42 to 47 km/h and some 20 km/h on cross country. Two double skin fuel tanks with some 200 l in total were mounted on both engine sides. The operational range was around 185 km on good roads.
The tank hull was somewhat different from the original one used on the Panzer 38(t). In order to install the new weapon mount, it was necessary to remove the turret, the top part of the hull armor and the ammo storage for the old gun. The front and side hull armor with the three observation hatches (two on front and one on the right side) and the hull machine gun were unchanged. The front hull armor was 50 mm thick, while the sides and rear were 15 mm thick.
On top of the hull, the new armored (open from top and rear) superstructure with the main gun was installed. On the upper part of the hull, about where the turret ring was, a ‘T’ shape gun mount was bolted in. The main gun and the gun crew were protected with an enlarged armored shield which consisted of six armored plates bolted together over the original gun shield. This armored shield offered the gun crew some protection from the front and sides, while the top and the rear were open. The thickness of the new modified gun shield was around 14.5 mm plus the armor from the original gun shield, and 10 mm on the sides.
The rest of this vehicle was covered in armored plates with different shapes and different angles, on top and over the tank hull (some 15 mm thick). The engine compartment was also protected from the sides with two armored plates.
Due to being an open-topped vehicle with low thickness armor and high silhouette, crew protection was on a very low level. Camouflage and a well-selected field position were essential for survival. As an open topped vehicle, the crew was also exposed to weather conditions. A canvas cover could be placed over the vehicle but it limited the crew’s view of the surroundings.
The main gun, as previously noted was the 7.62 cm PaK 36(r), with some 30 rounds of ammunition. Most rounds were placed below the gun mount, with three rounds mounted on the left and right side below the gun shield. In practice, crews would store many more rounds in any available free space inside or outside the vehicle. Due to the gun weight, installation of a heavy travel lock was necessary, in order to avoid damaging the main gun when on the move. At first, a simple steel tube shape travel lock was used, but during the war it was replaced with a strengthened triangle shaped one filled with sheet steel.
The elevation of the Pak 36 was -7° to +16° with a traverse of 50°. The maximum rate of fire was 10-12 rounds per minute. Armor penetration with the standard AP round from the range of 1000 m (at 0° angled armor) was around 108 mm. By using the much better (but rare) tungsten round (7.62 cm Pzar. Patr. 40), the armor penetration increased up to 130 mm at the same range.
The secondary weapon was the original Czech 7.92 mm ZB-53 (named MG-37(t) in German use) with some 1,200 rounds of ammunition. The crew would also carry their personal weapons for self defense.
The Marder III crew consisted of the commander/gunner, loader, driver and radio operator. The driver and the radio operator were positioned inside the vehicle, the same as on the Panzer 38(t). Two (modified) front hatch doors were located at the front top of the new armored superstructure, just beneath the main gun. These doors were used by the driver and the radio operator to enter or exit their positions. The driver was located on the right side and had two observation hatches (in front and on the right side). The radio operator (and also the hull ball mounted machine gun operator) was located to the left with his radio instruments (Fu 5 SE 10 U). The commander/gunner and the loader were located behind the new gun shield in the upper part of the vehicle. On the left side was the gun operator and the loader was on the right side. They only had a limited amount of space behind the gun shield. Used rounds and other equipment, spare parts or supplies were usually carried in the rear mesh wire basket.
Total weight was some 10.67 t. The length was 5.85 m, width 2.16 m and the height was 2.5 m.

Organization of the self-propelled anti-tank battalions

Special self-propelled anti-tank battalions (Panzerjäger-Abteilungen Sfl.) were formed and equipped with the new Marder III. Both the Wehrmacht and the Waffen SS fielded such battalions. Later during the war, as more and better self-propelled anti-tank were built, the surviving Marder IIIs were given to infantry (motorized) divisions or returned to Germany to be used as training vehicles.
Self-propelled anti-tank battalions were supposed to be equipped with 45 Marder III vehicles. Three were used as command vehicles (Stabskompanies) and 12 vehicles were positioned in each of the three Panzerjäger-Kompanien. The Panzerjäger-Kompanien were divided into three platoons, each with four vehicles. The rest were used to equipped HQ section (Gruppe Fuhrer) with two vehicles in each Kompanie.
These anti-tank battalions were equipped with other vehicles necessary for their successful operation: over 20 motorcycles (half were with sidecars), 45 cars, more than 60 trucks, some 13 half-track of different types (four Sd.Kfz.10, six Sd.Kfz.7 and three Sd.Kfz.8) and one Sd.Kfz.251. Sometimes, modified ammunition Panzers were used, but this was rare. In total, Self-propelled anti-tank battalions had around 650 men.
It is important to note that this information and the numbers presented were, in the best case, purely theoretical, for several reasons: because of the losses during the war, not many Marders were produced to equip all units. Also, there were insufficient men and materials, many vehicles were often on repairs etc.

In combat

The majority of the Marder III tank hunters were sent to the Eastern Front, where such a vehicle was desperately needed by the German forces. Almost a third of the produced Marder IIIs would be sent to North Africa, helping the DAK (Deutsches Afrikakorps) fighting against British and later even American tanks.

In North Africa

After the failed Italian attack on the British positions in Egypt, Mussolini was desperate to convince Hitler to send military aid to his shattered forces in Africa. Initially, Hitler was not interested in the Mediterranean. He reluctantly decided to help his ally and sent an armored force under the leadership of Erwin Rommel.
The Germans quickly found out that, beside the famous ‘88’ (88 mm Flak gun), the standard 3.7 cm and short 5 cm anti-tank weapons struggled against the well armored British Matilda tank. A number of captured and modified 7.62 mm PaK 36(r) guns were also sent to the North African front. One great issue with this weapons was the low mobility on a front were speed was essential for success. Several solutions to this problem were tested, like the Sd.Kfz..6 armed with the 7.62 mm PaK 36(r) in a box shape casemate and the experimental half-tracks armed with the 7.5 cm L/41 gun.
Before sending the new Marder to Africa, it was necessary to adapt them for service in the African desert. In March 1942, one Marder III was equipped and tested with sand filters. The tests were successful and later vehicles sent to Africa would have these filters. The number of vehicles sent ranges from 66 to 117 (depending on the sources).
The first Marder IIIs (6 vehicles) arrived to North Africa in May 1942, with the last one arriving in November 1942. The freshly arrived Marder IIIs were used to reinforce and equip anti-tank battalions of the 15th and 21th Panzer Divisions.
By late October 1942, the 15th Panzer Division had at its disposal some 16 Marder III vehicles. All were allocated to the 33rd Anti-Tank Battalion, together with a number of towed 5 cm PaK 38 anti-tank guns. After the British attack at El Alamein at the end of October 1942, the 33rd Anti-Tank Battalion was under a heavy attack. It managed to inflict some heavy damage to the British advance units but it also suffered losses. Almost all the Marder IIIs were lost, except one.
In September 1942, the 39th Anti-Tank Battalion of the 21st Panzer Division had around 17 PaK 38 guns and 18 Marder IIIs divided between two Kompanien (1st and the 2nd). There is little information on this unit’s participation in the Battle for Alam Halfa (October-September 1942). In late October 1942, during the British counterattack at El Alamein, all 18 Marder III vehicles were reported to be still operational. By the 25th of October, this unit was pulled out into reserve. The next day, the 2nd Kompanie was sent to the north to help stop a British attack while the 1st Kompanie was located to the south.
By the end of October, the 39th Anti-Tank Battalion was heavily involved in fighting, trying to free some encircled units of the 164th Light Division. On the 4th of November, the surviving German forces were forced to retreat. The 39th Anti-Tank Battalion lost all its Marder IIIs and had only a few 5 cm PaK’s left. By December, the 21st Panzer Division had only two Marders III, which were not even fit for action.
In March 1943, after some resting time, the 39th Anti-Tank Battalion was reformed and reinforced. The 1st Kompanie received 9 Marder IIIs and the 2nd Kompanie received Marder III Ausf.H (version armed with the 7.5 cm PaK 40). They fought in Tunisia until the Axis surrender in May.
The 10th Panzer Division was pulled out from the Eastern Front and after some time resting was reinforced with 9 Marders III in July 1942 (90th Anti-Tank Battalion). The 10th Panzer Division was sent to the North African front in November 1942. In Africa, this unit was engaged in many battles against the British and newly-arrived American forces and the losses were heavy. The last Marder III was reported lost in March 1943.
The 190th Anti-Tank Battalion and the 605th Anti-Tank Battalion were supposed to be equipped with Marder IIIs, but there is little evidence that this ever happened.
The British tank crews learned to fear the Marder’s firepower at long ranges. When the British first learned about this new German tank hunter they assumed that was armed with the famous ‘88’ gun.
null
Marder III, captured by the Allies in North Africa. Source: Pininterest


A Marder III of the 49th Panzerjäger-Abteilung of the 4th Panzer Division on the Eastern Front, 1943.

A Marder III with a three-tone camouflage in Russia, 1943. Note the kill rings.
A Marder III captured by Soviet Troops in 1944. Note the crossed-out Balkenkreuz.

Marder III of the Deutsche Afrika Korps in July 1942. This vehicle belonged to the 15th Panzer Division.

In Russia

The 1st Panzer division was heavily engaged in Russia during the first year of German invasion. In May 1942, it was reinforced with six Marder IIIs which were used to equip the 37th anti-tank battalion. This unit’s first action was during the German attack (July 1942) on the Soviet positions around Belyj and Szytschewka south of city Rzhev (some 230 km west from Moscow). By September 1942, this unit was credited with destroying some 99 Soviet tanks. By the end of November and beginning of December, it was engaged in defensive operations in the region of southwest of Bjeloj (Tver Oblast near Moscow). Due to the long and difficult fighting, this unit was exhausted, so it was sent to France (end of December) for rest and relaxation. The surviving Marders were left behind, but there is no information about which units received them.
The next unit to receive the Marder III was the 38th anti-tank battalion of the 2nd Panzer Division. In May 1942, the 38th anti-tank battalion was reinforced with 9 Marder IIIs, one Panzer II Ausf.B Befehlspanzer and a few Panzer I Ausf.B modified into ammunition tanks. This unit was not immediately sent to the front, but instead spent the next few months in training. It was ready for active duty in July 1942, and was immediately involved in heavy fighting around Bjeloj. As it was the only unit to have enough firepower to destroy Soviet heavy tanks at long ranges (the first new Panzer IVs with the longer guns would arrive in this division in August 1942), it managed to claim 14 Soviet T-34 tanks with no losses. On the 11th August, the 2nd Panzer Division managed to destroy 20 enemy tanks, but most were destroyed by the Marders. In December 1942, the 38th anti-tank battalion received a few Marder III Ausf.H (7.5 cm PaK 40). From August 1942 to March 1943, the 38th anti-tank battalion was heavily engaged in many combat operations on the Eastern front. Few were lost due to enemy fire, but many were lost due mechanical breakdowns. From March to April 1943, this unit was sent to the rear for rest. In March, it was again reinforced with 9 new Marder III Ausf.H. This unit did not see action again until July 1943. Due the standardization of weapons within anti-tank battalions in late 1943, the 38th anti-tank battalion was forced to give up all its remaining Marder IIIs to the 616th anti-tank battalion by the end of June 1943.
The SS units were also given a number of Marder III vehicles as they were seen as elite fighting forces and deserved only the best available equipment. The 2nd SS Anti-Tank Battalion of the SS ‘Das Reich’ Panzer division received 9 Marder IIIs in May or June 1942. The first combat action of this unit was in February 1943 on the Eastern Front near Khrakov (in Ukraine). At first, not many vehicles were operational due to the low temperature which caused problems with frozen condensed water gathering at the bottom of the two fuel tanks. In late February, the 2nd SS Anti-Tank Battalion was reinforced with (unknown number) the Panzer II based Marder IIs. During the Operation Zitadelle, the 2nd SS Anti-Tank Battalion saw some heavy action. By the end of summer 1943, the 2nd SS anti-tank battalion was so depleted that this unit was disbanded, and the soldiers who survived were sent as replacement to other SS Stu.G. Abt. DR (units equipped with StuG vehicles). An interesting fact about the 2nd SS Anti-Tank Battalion is that captured and reused several T-34 tanks without the turret as ammunition tanks.
The Marder III fought until the end of the war and, on the 22nd of January 1945, a dozen or more were reported present (around 60 vehicles in various conditions) in several Panzer and infantry divisions.
Beside these Panzer divisions, many more units received Marder III anti-tank vehicles: The 5th (12), 6th (9), 7th (47), 8th (12), 17th (6), 18th (6), 19th (16), 20th (24) and the 22nd (6) Panzer Divisions. As more advanced tank hunters were built, the Marder III was used to equip several infantry and infantry motorized divisions. 18th Inf. Mot. div. received 6, the 20th Inf. Mot. div. received 15, the 29th Inf. Mot.div. received 6, and the 35th Infantry division received only 2 vehicles.
It is important to note that, besides these divisions, many more received the Marder III, but it is difficult to find the exact numbers. In addition, some vehicles were used as training vehicles, which also complicates the total count.

Production

In order to start the production of the new Marder III as quick as possible, BMM was ordered by the German military officials to reuse the existing Panzer 38(t) production line, and thus save time. It was necessary to make certain changes to the production line and adapt it for the needs of the new Marder. Because of this decision, the production of the original Panzer 38(t) was reduced to a minimum and, at the beginning of June 1942, completely stopped in favor of the new tank hunter.
Production of this vehicle began in April of 1942. Monthly production was: April 38, May 82, June 23, July 50, August 51, September 50, and October 50, in total 344 vehicles. From April to July, the Panzer 38(t) Ausf.G tank chassis was used, and from July to the end of the production run in October, the Panzer 38(t) Ausf.H tank chassis with a stronger engine was used.

Advantages and disadvantages of the Marder III

The Marder III tank hunter solved the problem with the low mobility of towed anti-tank guns. It could quickly respond to any threat and quickly disengage and retreat to safety if necessary. The Panzer 38(t) chassis was mechanically reliable and was adequate for this modification. The Marder III was fairly fast, especially on the march and the steering was easy for the driver to handle.
The main gun had enough firepower to destroy any tank at that time at great distance. This was especially evident during the battles in open field in Africa and Russia. It was also a great morale booster for the infantry when they fought together.
The high profile was a big problem for the Marder III, making it a good target for enemy gunners. The armor was also quite light and offered only limited protection from small arms fire and shrapnel. Heavy camouflage and a good selected combat position were necessary for the crew’s survival, but this was not always possible or easy to achieve successfully (for example, in open fields and deserts).

The Marder’s high profile is evident here. Source: www.worldwarphotos.info
The firing position had to be changed often in order to avoid enemy return fire. By doing this, it was necessary to rise (or lower) the travel gun lock, which could take time as a crew member had to get out and do it manually. This had to be done so as not to cause damage to the gun or affect the gun calbration.
Major mechanical failures were rare, but due to the high centre of gravity, the suspension spring bolts were under high stress and they often broke. Supplies of new spare spring bolts were often not available, and this forced many vehicles to be out of use for some time.
The ground pressure was very high, if the driver did not pay attention to the environment, he could easily get the vehicle stuck in the mud. The low ammo capacity was a big issue, especially during prolonged fights as the crew could quickly run out of ammunition. A problem was also the fact that there was no adequate vehicle for the delivery of additional ammunition. Half tracks were often used for this role, but there were never enough of them available. Ammunition carriers based on tank chassis were preferred however they were used in limited numbers by the Germans during WWII.

Getting stuck in the mud was easy thanks to the high ground pressure, as shown by this Marder somewhere on the Eastern Front, 1943. Source: www.worldwarphotos.info

7.62 cm PaK 36(r)

During Operation Barbarossa, the German ground forces managed to captured large numbers of field guns of different calibers. One of the gun captured was the 76.2 mm M1936 (F-22) divisional gun. After a brief assessment of the characteristics of this gun, the German were satisfied with its performance. The gun was given to the army for use under the name FK 296(r). It was at first used as a field gun, but very soon it became clear that it possessed great anti-tank capabilities.

7.62 cm PaK 36(r) was used by the Germans in fairly large numbers during the war. Source: Axishistory
When the German army came across the new Soviet T-34 and the KV-1 and KV-2 tanks, the 37 mm PaK 36/37 did not prove up to the task and the PaK 38 was available only in small numbers. Thus, a temporary solution had to be found and quickly. The 7.62 cm M1936 gun was modified for use as an anti-tank weapon. The changes involved adding a muzzle brake, the gun shield was cut in half and the upper part was welded to the lower part of the shield (similar to the PaK 40 two part shield), reaming-out the gun chamber to 7.5 cm caliber in order to use the standard German ammunition (same as PaK 40) and the elevating handwheel was moved to the left side. After these changes, the gun was renamed 7.62 cm PaK 36(r), and remained in use throughout WWII.

7.62 cm PaK 36 (r) Pz.Kpfw.38(t) ‘Marder III’ Sd.Kfz.139 specifications

Dimensions 5.85 m x 2.16 m x 2.5 m
Total weight, battle ready 10.67 tons
Crew 4 (driver, commander, gunner, loader)
Propulsion Praga EPA six cylinder
Top Speed 42-47 km/h, 20 km/h (cross country)
Max Operational Range 185/140 km
Armament 7.62 cm PaK (r) L/54.8
one 7.92 mm MG 37 (t)
Armor Front 30 mm (1.18 in)
Sides 14.5 mm (0.57 in)
Rear 14.5 mm (0.57 in)
Production Total 344

Links, Resources & Further Reading

Panzer 38(t), Steven J. Zaloga, New Vanguard 215.
Marder III Nuts and Bolts 15, Volker Andorfer, Martin Block and Jonh Nelson.
Naoružanje drugog svetsko rata-Germany, Duško Nešić, Beograd 2008.
Waffentechnik im Zeiten Weltkrieg, Alexander Ludeke, Parragon books.
Kraftfahrzeuge und Panzer der Reichswehr, Wehrmacht und Bundeswehr ab 1900, Werner Oswald 2004.
German Artillery of World War Two, Ian V.Hogg,
Sturmartillerie and Panzerjager 1939-1945, Bryan Perrett.
German Army S.P Weapons 1939-45 Part 2, Handbook No., P/Chamberlain and H.L. Doyle.
Fighting men of WWII, Axis Forces, David Miller, Chartwell Books 2011.

Categories
WW2 German Tank Destroyers

10.5cm K. gepanzerte Selbstfahrlafette IVa – Dicker Max

Nazi germany Nazi Germany (1941) SPG – 2 built

Introduction

The German Army 10.5 cm K. gepanzerte Selbstfahrlafette IVa artillery self-propelled gun was intended to be used as a long range ‘bunker buster’.
The purpose of this weapon was to fire from a long distance at a strongly held enemy fortification without being in danger of coming under return fire from its target.
The Dicker Max had a long barrelled 10.5cm K 18 cannon to enable it to shoot shells over long distances
It had a long barrelled 10.5cm K 18 cannon, which enabled it to shoot APHE shells over long distances (photographer unknown)
The German armament manufacturer Krupp began development in 1939, but no prototypes were available in time for the invasion of France. The French Maginot Line system of concrete strongpoints, along the border between France and Germany, would have been one of its intended targets. With the quick surrender of France, there was no longer a requirement for such a weapon.
It was then envisaged that this self-propelled artillery gun could be used in the role of a powerful long range tank destroyer. Two prototypes were built and sent to the Eastern front for battlefield trials.

The Name

This self-propelled gun is normally known by its modern nickname, ‘Dicker Max’, which means ‘thick’ or ‘fat’ Max but it was never officially called that in any wartime documentation. It did have a very large profile compared to other self-propelled guns built in 1941. It is also known by a number of other names.
Throughout most of its development, it was known as the 10 cm K Panzer-Selbstfahrlafette IVa (Pz.Sfl.IVa). The letter K stands for the German word ‘Kanone’, which means gun or cannon. ‘Panzer-Selbstfahrlafette’ translates to armored self-propelled gun mount. On 13 August 1941, this SPGs name changed for the last time. It was redesignated 10.5 cm K. gepanzerte Selbstfahrlafette (gp.Sfl.). The German term ‘gepanzerte Selbstfahrlafette’ also translates to armored self-propelled gun mount. The Panzerjäger-Abteilung 521 unit commander, Oberleutnant Kurt Hildebrandt, mentioned in his war diary that this vehicle was given the name ‘Brummbär’.
This Dicker Max has 7 kill rings on its turret.
This Dicker Max has 7 kill rings on its gun barrel. (photographer unknown)

Design

In January 1941, the two finished prototype Dicker Max SPGs were driven out of the factory doors. Hitler witnessed a demonstration of their abilities on 31st March 1941 and gave his approval. If combat trials were successful, then production could begin as soon as possible. Realistically, this would not have been possible until the spring of 1942 if the production order was given following successful trials.
The K18 heavy field howitzer was a very large and heavy gun. The designers needed a strong vehicle to carry it. They chose the Panzer IV Ausf. D tank chassis, but it had to be heavily modified. The gun crew needed space to work the weapon. The Panzerkampfwagen IV engine was at the rear of the vehicle, but this was a problem. The solution the designers came up with was to move the engine to the middle of the chassis. The V-12 Maybach HL120 engine of the Panzer IV was replaced by a lighter Maybach HL 66 Pla 6-cylinder liquid-cooled engine.
The tank turret was removed. The armored engine hatches were cut away to leave a large space in the rear of the vehicle. The gun was mounted above the engine. An open topped armored fighting compartment superstructure casement was built around the gun. The sides and rear were constructed using 20 millimetres (0.79 in) thick armor.
This would stop most small arms fire and shell shrapnel. The crew were given better protection at the front. The forward glacis plate was 50 mm (2 inch) thick face-hardened armor. It was sloped at 15° from the vertical.
The Dicker Max was based on a Panzer IV tank chassis
The Dicker Max was based on a Panzer IV tank chassis. (photographer unknown)
This vehicle was seen as a second line support weapon that used its long range to engage enemy targets and stay out of harm’s way. It was not given a hull mounted machine gun. The one that was fitted to the Panzer IV tank chassis was removed.
The designers thought it would be a good idea to replace it with a fake armored driver’s compartment on the right hand side of the vehicle, that matched the one on the left, to confuse the enemy. The crew carried three 9 mm machine pistols with 576 rounds of ammunition for use in self-defence.
An ‘A’ frame gun travel lock was fitted on the front deck to secure the gun whilst the vehicle was driving across uneven ground. The 10.5cm K18 gun could only traverse 8° to the left and right, with a depression of 15° and elevation of 10°.
The gunner and driver had to work together to bring the gun to bear on an enemy target. A large double baffle muzzle brake was fitted to the end of the barrel to help reduce the massive recoil of the gun by diverting the high pressure gasses sideways. This increased the time during which the gun barrel could be used before requiring replacement. There was storage space for only 25 rounds inside the fighting compartment.

The 10.5cm K 18 Gun

The German Army 10.5 cm schwere Kanone 18 L/52 (10.5 cm sK18 L/52) was a field gun used by Germans in WW2. The German words ‘schwere Kanone’ mean heavy cannon or heavy gun. They were often abbreviated to ‘sK’ or just ‘K’. The 10.5cm K18 was heavier than the 10.5cm M18 field howitzer because guns have longer barrels than artillery howitzers. During the vehicles development the gun was often refered to as being a 10 cm rather than the more accurte 10.5 cm designation.
Even though it had a relatively small calibre, it’s weight was 5.5 tonnes (about the same as the 15cm howitzer), making it 3.5 tonnes heavier than the 10.5cm Lfh18 light field howitzer
The 10.5cm K18 used the same Krupp gun carriage as the 15 cm howitzer because both weapons had a similar weight. It sometimes equipped the medium artillery battalion, but normally was used by independent artillery battalions and on coast defense duties.
German Army 10.5 cm schwere Kanone 18 (10.5 cm sK 18) was a field gun used by Germans in WW2.
The 10.5 cm schwere Kanone 18 (10.5 cm sK 18) was a heavy field gun used by Germans in WW2. (photographer unknown)
The gun was developed late in the 1920’s by Rheinmetall. It didn’t enter production until 1933. The most important feature of the 10.5cm K18 gun was the barrel. The barrel length was 5.46 m (18 ft), or L/52, meaning 52 times the caliber. This was almost twice as long as the 10.5cm Lfh18 howitzer, thus giving it one-and-a-half times the range: 19 km compared with 13 km when firing HE high explosive shells.
Only 1,500 guns were produced. The APHE shell (Armor Piercing shells with High Explosive filler) weighed 15.6 kg and was fired at a velocity of 835m per second (2,739 ft/s). At a range of 2 km (1.24 mi), its armor piercing shell could penetrate 111 mm (4.37 in) of armor sloped at 30°. At 1.5 km (0.93 mi), it could penetrate 124 mm (4.8 in). At a range of 1 km (0.6 mi) it could penetrate 138 mm (5.43 in). At 500 m (0.3 mi) its AP shell could penetrate 155 mm (6.1 in) of armor.
Production numbers of the 10cm K18 were quite low, especially when compared to the production of the lFH18 and the sFH18. Thirty five were produced in 1940, one hundred and eight were manufactured in 1941, one hundred and thirty five in 1942, four hundred and fifty four in in 1943 and seven hundred and one in 1944.
In some official German Army reports the 10.5cm K18 gun was officially designated 10cm Kan. This can be very confusing. The actual caliber of the s.10 cm K18 was 10.5 cm (4.14 inches). The German 10 cm Kanonen originated from the WW1 10.5 cm naval gun caliber.
The 105mm K18 Dicker Max SPG during combat trails on the Eastern Front 1941
The 105mm K 18 Dicker Max SPG during combat trails on the Eastern Front 1941. (photographer unknown)
When the 10.5cm sK 18 gun first entered service in the German Army, it was not motorized and had to be pulled by a teams of horses. The gun weighed too much for one team of six horses, therefore the barrel and the carriage had to be towed as separate loads by two different teams.
Unlike the 10.5cm sFH 18 howitzer, however, the 10.5cm K 18 cannon was considered too large to be horse-drawn, and was therefore not found in the standard German infantry division until the divisional artillery regiments began retiring its horse drawn teams and using half tracked motorized tractor units in the middle of the war.
Panzer Artillery Regiments and later Panzergrenadier Divisions had been motorized from the outset, and one battery of the heavy battalion of these regiments was equipped with four K18 cannons for most of the war. The sK 18 was intended to be used mostly in counter-battery role; besides, due to its long range, it was more suitable to furnish fire support.
The 10cm K 18 gun fired a flatter trajectory round at a higher velocity out to a range of 19,075-meters, making it the furthest-ranging gun in the German arsenal. A typical mission would be counter-battery fire (the destruction of enemy artillery). In the long run it proved a disappointment in service, due to its relatively low shot weight of only 5.43 kg, which reduced the effectiveness of the gun considerably.
The crew of this 10.5 cm K. gepanzerte Selbstfahrlafette IVa called their vehicle Brummbaer
The crew of this 10.5 cm K. gepanzerte Selbstfahrlafette IVa called their vehicle ‘Brummbaer’. The photo shows it after repairs, ready to take part in the summer Eastern Front offensive Case Blue. Notice the tank ‘kill rings’ are no longer rings: they have been repainted by the mechanics in the workshop. (photographer unknown)

An article by Craig Moore

Specifications

Dimensions (L x W x H) 7.56m (5.8 without gun) x 2.84m x 3.25 m
(24’9″ x 9’4″ x 10’8″)
Total weight, battle ready 26 tonnes
Crew 5 (commander, driver, gunner, 2 loaders)
Propulsion Maybach HL 66 Pla, 6-cylinder liquid-cooled engine, 180 hp
Fuel capacity 207 liters
Top road speed 27 km/h (17 mph)
Operational range (road) 170 km (110 miles)
Armament 10.5 cm schwere Kanone 18 L/52 gun, 25 rounds
Armor Front 50 mm
Sides 30 mm
Rear 30 mm
Total production 2

Sources

Panzer Tracts No.7-1 Panzerjaeger Thomas L Jentz and Hilary Louis Doyle
U.S. War Department publication Tactical and Technical Trends. Tactical and Technical Trends, No. 6
German Artillery at War 1939-45 vol.1 by Frank V.de Sisto.
Armor Journal 10,5cm Dicker Max by Marcus Hock
Die deutschen gepanzerten Truppen bis 1945 by General Munzel

Combat Trials

In May 1941, the Panzerjaeger-Abteilung 521 tank hunter battalion was chosen to conduct combat trials with the two new prototype 10.5cm K. gepanzerte Selbstfahrlafette IVa self-propelled guns. They were used on the Eastern Front along with the two new prototype 12.8cm kan (Sfl.) self-propelled guns.
The trials did not start well. One of the 10.5cm K. gepanzerte Selbstfahrlafette IVa self-propelled guns was completely destroyed when it accidentally caught fire and the heat caused the ammunition to detonate.
This destroyed 10.5cm K. gepanzerte Selbstfahrlafette IVa is not in a wood and its front right track guard is still flat
A massive internal explosion has blown away the whole side of this Dicker Max SPG
This photograph was taken from the other side of the same destroyed 10.5cm K. gepanzerte Selbstfahrlafette IVa. A massive internal explosion has blown away the whole left side of the vehicle. (photographer unknown)
Destroyed Dicker Max
In this photo of the destroyed 10.5cm K. gepanzerte Selbstfahrlafette IVa the front right track guard has been bent upwards. It looks like a mechanic wanted more room to work in as he tried to remove the vehicle’s final drive. It was probably dragged back into the woods to provide some cover, for the engineers stripping the vehicle, from Soviet air attack. (photographer unknown)
The remaining 110.5cm K. gepanzerte Selbstfahrlafette IVa fought successfully until the end of 1941. The gun barrel, in some of the black and white operational photographs, features white rings painted on it. These are ‘kill rings’, that denote how many Soviet tanks it had destroyed.
Records show that it was transported back to Krupp and rebuilt during the first half of 1942. The photograph below is of the vehicle with damage. It looks like it has lost a road wheel and suffered damage to the fourth road wheel, possibly caused by driving over a mine. It is on a railway flatback tank transporter wagon going to be repaired.
When the repair work was complete, it was returned to the Panzerjaeger-Abteilung 521 in time to take part in the 1942 new German summer offensive on the Eastern Front, called Case Blue.
Damaged Dicker Max
Notice the ‘kill rings’ have been hand painted and go all the way around the barrel on this 10.5cm K. gepanzerte Selbstfahrlafette IVa. When it returns from the factory they are more professionally painted and are only on the side of the barrel. (photographer unknown)
Battalion records of the Panzerjaeger-Abteilung 521 showed the 10.5cm K. gepanzerte Selbstfahrlafette IVa being available for Operation Case Blue. The same Battalion records for November—December 1942 do not show it on the register of available vehicles. Nothing is recorded of its fate. Normally if it was knocked out by enemy action or had a mechanical breakdown this would be recorded.
One source has stated that the surviving 10.5cm K. gepanzerte Selbstfahrlafette IVa was sent to Germany in October 1942 and rebuilt as a standard Panzer IV tank nicknamed “Brummbaer”. Is this true? Why go through this effort when you have a weapon that is destroying enemy AFVs on the frontline. It seems unlikely.

Were the trials a success?

The one remaining vehicle is known to have combat kills but, by the end of 1942, production of the high velocity 8.8cm gun was at a higher level than the 10.5cm K18. It may be argued that it was decided to concentrate on producing the anti-tank self-propelled guns that used the 8.8cm gun: these included the Nashorn, Jagdpanther and Ferdinand.

The Panzerjaeger-Abteilung 521

On the 8th June 1942, the German Army tank hunter battalion Panzerjaeger-Abteilung 521 was fighting on the Eastern Front as part of XVII Corps, 6th Army, Army Group South. Battalion records recorded that it had two companies of Marder II 7.5cm Pak 40 anti-tank self-propelled guns, one company of Panzerjäger I 4.7cm anti-tank self-propelled guns, one platoon with two 12.8m Selbstfahrlafette auf VK30.01(H) “Sturer Emil” self-propelled guns and one 10.5cm K. gepanzerte Selbstfahrlafette IVa.
The last surviving 10.5cm K. gepanzerte Selbstfahrlafette IVa disappeared from the Panzerjaeger-Abteilung 521 ‘strength reports’ in November 1942. Both “Sturer Emils” and three Panzerjäger-I SPGs and a Marder SPG are shown available for deployment. In December, only one “Sturer Emil”, three Panzerjäger-I SPGs and one Marder SPG were reported available for action when the unit was merged in a “Panzerjaeger-Verband”. It was destroyed in the Stalingrad-Area in January 1943.
There is a problem to solve. The last known photograph of the surviving 10.5cm K. gepanzerte Selbstfahrlafette IVa is dated February 1942 and has a solder dressed in what looks like Red Army winter clothing climbing on top of the vehicle. It is not known if this is a Soviet soldier or a German soldier wearing captured winter clothing. Some sources state that it was a Soviet official photographer. It is not known what happened to this vehicle after this photograph was taken.

Operational Photographs

Dicker Max and crew of the Schwere Panzerjaeger Abteilung 521
10.5cm K. gepanzerte Selbstfahrlafette IVa and crew of the Schwere Panzerjaeger Abteilung 521 (photographer unknown)
The long 10.5cm gun was clamped in an A frame Gun lock when driving across country
The long 10.5cm gun was clamped in an ‘A’ frame gun lock when driving across country (photographer unknown)
A large muzzle brake was fitted to the long 10.5cm K18 gun barrel
A large muzzle brake was fitted to the long 10.5cm K18 gun barrel to help reduce the effects of recoil by dispersing the high pressure explosive gasses when the gun was fired.  (photographer unknown)
Dicker Max 10.5cm K18 SPG driver
The 10.5cm K. gepanzerte Selbstfahrlafette IVa’s driver is standing on his seat with the top of his body out of the open hatch. The armored driver’s position on the right of the vehicle is fake and meant to confuse enemy gunners. (photographer unknown)
An early photograph of a Dicker Max without the battalion badge.
An early photograph of a Dicker Max without the battalion badge. Notice the spare track attached to the front of the hull. (photographer unknown)
Panzerjager-Abteilung 521 only had one Dicker Max 10.5cm K18 SPG.
Panzerjager-Abteilung 521 only had one 10.5cm K. gepanzerte Selbstfahrlafette IVa. It did have a company of Panzerjäger I 4.7cm anti-tank self-propelled guns as you can see in this photograph. (photographer unknown)
Dicker Max
This is the last known photograph of the surviving 10.5cm K. gepanzerte Selbstfahrlafette IVa before it was destroyed. Notice the increase amount of kill rings on the barrel and the addition of a camouflage livery on top of the grey base colour. There is snow stuck in the tracks but it has not been white washed. (photographer unknown)
Germans Tanks of ww2
Germans Tanks of ww2

This Dicker Max was destroyed in an accident before it reached the front line
This 10.5cm K. gepanzerte Selbstfahrlafette IVa self-propelled gun caught fire in an accident which ignited the ammunition and destroyed it before reaching the front line.
The Dicker Max that fought with Panzerjaeger-Abteilung 521
The Panzerjaeger-Abteilung 521 tank hunter battalion on the Eastern Front received the only surviving 10.5cm K. gepanzerte Selbstfahrlafette IVa self-propelled gun for combat trials in May 1941. The crew called it ‘Brummbaer’.

Categories
WW2 German Tank Destroyers

Jagdpanther

Nazi germany Nazi Germany (1943) Tank hunter – 415 built

Historical context

After encountering heavy Soviet tanks such as the KV-1, it rapidly became apparent that the Pak 36, which formed the bulk of the German AT guns at the start of Operation Barbarossa, was inadequate. To counter the threat these tanks posed, heavier guns were introduced to the front, including the 7.5 cm (3 inch) Pak 40 and, more importantly, the 88 mm (3.5 inch) Pak 43. The 88 mm (3.5 inch) Flak, on which the Pak 43 was based, had been used in ground support since the Spanish civil war and had proven to be very proficient at taking out tanks. So it’s no surprise the decision was made to mount it onto a tank chassis.
The resulting tank was the Hornisse (later known as the Nashorn), which had a Pak 43 mounted onto a Panzer III/IV chassis. Despite having a high silhouette and very little armor, it proved more than adequate, being able to take out tanks at ranges of over 3000 m (3280 yards).
Another tank destroyer using the Pak 43 was the Ferdinand (later known as the Elefant). After losing a design contract to Henschel, Porsche had 100 Tiger P chassis which couldn’t be equipped with the Henschel turret, since they were reserved for the Henschel Tiger tank. In 1942, the order was given to convert the remaining chassis into tank destroyers, which were to use the Pak 43. The Ferdinand first saw use in the Battle of Kursk, where it could easily take out enemies from long range. But when it advanced, the flaws became apparent. The lack of close range defense made it an easy target for Soviet infantry, that could near the tank. to throw Molotov cocktails onto the engine deck. Its heavy weight also made it difficult to cross most bridges of it’s era, and the poor Soviet infrastructure made navigating near impossible in certain places.
It became clear that the German army was in need of a tank destroyer that offered decent mobility without sacrificing armor, and vice versa. And as such, the Jagdpanther came to be.

The hunting Panther

Front-left view of the Jagdpanther
The Jagdpanther is one of the most iconic tank destroyers of World War 2. Based on the Panther chassis, the famous tank destroyer was produced from 1943 up until the end of the war in 1945. Mechanically more reliable than the Ferdinand/Elephant and the Köningstiger, armed with the 88 mm (3.5 inch) Pak 43 “Panzerknacker” and with 80 mm of 55 degree sloped armour (this presented 138 mm of thickness of armour to a shell fired horizontally at the front of the Jagdpanther) it was a formidable opponent for any tank at the time. During the war, over 400 tanks were produced, seeing action on both the Eastern and the Western European fronts. After the war, captured Jagdpanthers were used by the French army, along with Panthers and other German tanks, up until the 1950’s. Overall,the Jagdpanther was a great mix of mobility, firepower and armor. Today, only 10 of the tank destroyers are left, spread across various museums worldwide.

Development history

Design

When the Pak 43 was designed, it was originally meant to be towed into battle, but it soon became clear that the anti-tank gun was very unwieldy to transport in the field. As a result, the Wehrmacht started looking for a self-propelled platform to mount the 88 mm (3.5 in) gun onto. The solution was found on August 3rd, 1942, when the Heereswaffenamt (the agency in charge of R&D for the German army) decided to mount the Pak on a Panther chassis. Krupp was awarded the design contract, but was unable to deliver the design drawings by January 1943, and so the project was handed over to Daimler-Benz. Krupp, however, remained responsible for the production and delivery of the Pak 43, the main armament of the Jagdpanther. In the first designs, the tank was named the “88mm Sturmgeschutz.”
The final design was presented to Hitler on his birthday, and subsequently accepted by the Heereswaffenamt in May 1943. As production started on the first models of the Jagdpanther, it became apparent that there was a shortage of workspace in the Daimler-Benz factory. That, combined with Daimler-Benz not being able to produce the contracted amount of Panthers, lead to production being handed over to MIAG, a Braunschweig based company. A pre-production model was presented to Hitler on the 20th of October, alongside a model of the Tiger 2 and the Jagdtiger. November that year, mass-production of the Jagdpanther was authorized. When it entered German Army service it was given the designation Sd.Kfz.172.

Production

Jagdpanthers on the factory floor
The first Jagdpanther meant for service was delivered in December 1943, with production increasing to 10 tanks per month in April 1944. Delays in production were mainly due to improvements being implemented. Strengthened gearboxes and intermediate gears were installed. Jagdpanther production was also slowed down due to bombing raids and lack of workmen. By the end of June 1944, only 46 of the tanks had left the factory floors, barely enough to equip one Schwerer Panzerjäger unit. This was far from the original 160 planned vehicles, which would have been enough to equip 3 units and have some left for testing and training.
The MIAG firm complained about the lack of workmen, and as such was sent 320 men from the Panzerjäger replacement unit. This managed to boost production to 20 tanks a month in September 1944. Neither the OKW, nor the Heeresamt were happy with the production numbers and, as a result, two other companies, MHN & MBA, were contracted to produce the Jagdpanther. This increased the total output to 67 tanks for December 1944.

Armament

The Jagdpanther was equipped with the fearsome 88 mm (3.5 inch)  Pak 43. Based on an anti-air gun, the 88 mm (3.5 inch) soon turned out to be more than adept at taking on an anti-tank roll. Accurate at over 3000 m (3280 yards) and with a muzzle velocity of over 1000 m/s (3280 ft/s), the 88 mm (3.5 inch) gun has more than earned its reputation as one of the best anti-tank guns of the war.
The Pak originally featured a monobloc barrel, but due to the rapid wear of the high-velocity gun, the decision was made to replace it with a dual piece barrel. Although this didn’t reduce wear, it did make replacement easier. The main gun was able to fire different shells, ranging from the armor piercing PzGr. 39/43 and PzGr. 40/43 to the high explosive Gr. 39/3 HL.
The Jagdpanther carried 60 rounds of 88 mm (3.5 inch) ammunition, 1200 rounds for the coax hull-mounted gun and two MP40’s with 384 9×19 mm rounds. With the introduction of the Nahverteidigungswaffe (close range defense weapon), it was possible to launch projectiles near the tank without endangering the crew, and so 16 grenades were added to the inventory. However, this weapon couldn’t be built into most of the Jagdpanthers before June 1944, due to a shortage of the weapon. As a result, earlier models of the tank have the opening in the roof sealed with a circular plate which was held by screws.

Armor

As the Germans improved their armor, so did the Allies. As the war progressed, bigger and heavier guns were being developed by the Allies, capable of shooting shells of ever-increasing penetration. To counter this, tanks were designed with thicker and sturdier armor, with the Jagdpanther being no exception. Meant to be able take on other tank destroyers, the Jagdpanther’s frontal upper armor was a single, 80 mm (3.15 inch) thick wall of steel under an angle of 55°, with the lower frontal armor being 60 mm (2.35 inch) at an angle of 60°. This resulted in a formidable effective armor thickness of ~140 mm (5.5 inch) for the upper plate and ~90 mm (3.5 inch) for the lower plate, guaranteeing protection from all but the heaviest of guns.
The gun mantlet was just as tough as the frontal armor of the Jagdpanther. A 100 mm (3.9 inch) thick ‘saukopf’ (pighead) mantlet was installed on the gun. The sides of the superstructure of the tank had 50 mm (1.97 inch) of armor, while the lower sides had 40 mm (1.57 inch) of armor. The roof and the floor were between 16 (0.63 inch) to 25 mm (1 inch) thick.

Mobility

Jagdpanther driving up a slight hill
The production model of the Jagdpanther weighed in at 46 tonnes, making it one of the heavier tanks fielded by the German army. The drive train was the same as the Panther aside from the engine and the heavier transmission. It was powered by a 12 cylinder Maybach HL 230 P30 23.1 liter V12 gasoline engine, which would give it an effective range of 160 km (100 miles) and a top speed of 46km/h (28.6 mph), making it as fast as contemporary Allied medium tanks such as the M4 Sherman, despite the latter weighing 15.000 kg (33070 lbs) less.

Crew

Inside the Jagdpanther there was a 5 man crew consisting of the commander, driver, gunner, loader and radio operator, with the latter doubling as machine gunner. The two hatches at the top of the tank were for the commander and the loader, with the hatch at the back serving as an entrance for the crew and to replenish ammunition.
On early models, the driver used two periscopes to see ahead, and 5 pistol holes which could also be used to observe the surrounding battlefield, but the latter soon turned out to be more detrimental to the strength of the armor. In later models the holes were removed and the left periscope was welded over, being filled with a 15 mm (0.59 in) thick plate. The commander and loader had four periscopes available to survey the surrounding area, two rigid, and two capable of turning.
The Jagdpanther was provided with a 10 Watt Fu 5 transmitter and a 2 Watt Fu 2 receiver radio. Command vehicles received the long range 30 Watt Fu 8 radio set.

Modifications

As the war went on, several additions and adjustments were made to the Jagdpanther.
January 1944: The pistol ports , which weakened the overall hull strength and had become unnecessary with the installation of the Nahverteidigungswaffe, were removed from the tank.
February 1944: The left driver periscope was removed and welded shut with a 15 mm (0.59 in) piece of steel and a towing coupling was welded to the back servicing plate. To make space for this, the winch was moved up to between the exhaust pipes.
Earlier Jagdpanther still used the Panther Ausf.A engine cover, with the difference being the air intake was made smaller to fit on the tank destroyer. Where the Panther’s radio antenna was attached to the hull of the tank, the Jagdpanther’s antenna was mounted on the back of the superstructure, next to the rear hatch. This left a hole in the engine cover, which was covered with a screwed-on plate.
May 1944: The monobloc gun was replaced with the two-piece gun, facilitating replacement of the worn barrel.
June 1944: A mount for a small 2-ton crane was planned for the roof of the vehicles.
The gun mantlet was changed so that a screw was at the top of the cast piece.
Later variation of the Jagdpanther, note the 'mushroom' mount for the crane and the Nahverteitigungswaffe
Note the ‘mushroom’ crane mount towards the back of the casemate, and the Nahverteidigungswaffe to the front and left of it.
September 1944: The OKH ordered manufacturers to stop using the Zimmerit protective coating on the tanks.
October 1944: Sheet metal pipes were installed over the exhaust, on the account of them glowing at night, possibly giving the tank’s position away.
The leading wheels of the Jagdpanther didn’t clean themselves, and as mud and snow gathered, tracks got thrown. New leading wheels of a bigger diameter were developed, reducing the amount of tracks thrown.
December 1944: The Jagdpanther started using the new type of engine cover provided for the Panther and “flame-destroyer” exhaust mufflers are installed, preventing mixtures of fuel and air in the exhaust from igniting.

Derivatives

In late 1944, plans had been made to mount the 128 mm (5.04 in) Pak 80 onto the Jagdpanther chassis. The new vehicle, known as the Jagdpanther mit 12.8 cm PaK 80, would have had a rear-mounted casemate and weighed in excess of 50 tonnes. The project never got past the blueprint phase and got shelved before the war ended.

Jagdpanther in action

The Jagdpanther mainly saw action one the Western front from its deployment in March 1944, with deployment to the Eastern front only occurring from January 1945 onwards. The first unit to receive the new Jagdpanther was the schwere Panzerjäger-Abteilung 654. Each Jagdpanther Kompanie was scheduled to receive 14 of the tanks destroyers, and an additional 3 command tanks for the battalion headquarters. Due to production problems, it wasn’t possible to bring the 654th to full strength before being sent to the front in June, 1944.

First blood

Jagdpanthers in France
The first action the Jagdpanthers saw was on the 30th of July, when they engaged a squadron of Churchill tanks near St. Martin de Bois. In a two-minute action, three Jagdpanthers managed to take out eleven Churchills, before an additional squadron of Churchills rushed in to help. The 6th Guards tank brigade reported the capture of two Jagdpanthers, which had been left behind due to track damage. Nonetheless, this encounter showed the strength of the new tank destroyer and helped cement its reputation as a threat to any tank that encountered it.

Ardennes Offensive

In preparation for the Ardennes Offensive, the OKH had planned to fully equip five tank hunter battalions with Jagdpanthers. Three of the five units were already at the front and as such weren’t at full combat strength. Due to supply problems, only 27 of the 56 planned Jagdpanthers made it to the battalions before the start of the offensive, with only 17 of them being operational.

Eastern front

Many of the tanks that were sent to the Eastern front weren’t destroyed by Soviet troops, but at the hands of their crew. The main problems that plagued the Panzer divisions were a lack of spare parts, fuel and delays in the production process that prevented more Jagdpanthers from reaching the front. In January 1945, the 563rd s.H. Pz.Jg.Abteilung managed to take out 53 tanks whilst only losing four Jagdpanzer IVs and one Jagdpanther to enemy fire. The bulk of their losses were credited to tanks being blown up lest they fell into enemy hands. For example, a stunning 12 Jagdpanthers and 17 Jagdpanzer IVs were destroyed by their crews in the 563rd alone. The rapidly deteriorating situation meant that many of the Jagdpanther crews sent to the front in 1945 had received little or no training, which reduced the already impaired effectiveness of the tank destroyer battalions.

An article by Thomas Verplancke

Links and sources

Walter J. Spielberger; Hilary L. Doyle; Thomas L. Jentz (2007), Heavy Jagdpanzer: Development – Production – Operations, Atglen, Pennsylvania: Schiffer Publishing
Peter Chamberlain; Hilary L. Doyle (1973), AFV Weapons Profile No. 55: German Self-Propelled Weapons,

Jagdpanther specifications

Dimensions L-W-H 6.86m (9.86m with gun) x 3.28m (3.42m with Schürzen) x 2.51m
22ft 6in (32ft 5in with gun) x 10ft 9in (11ft 3in with Schürzen) x 8ft 11in
Track Width 66 cm
Track length 15 cm
Total weight, battle ready 45,500 kg (100,300 lbs)
Crew 5 (driver, commander, hull gunner/radio operator, gunner, loader)
Propulsion Maybach HL230 P30 V-12 petrol 700 PS (690 hp, 515 kW)
Suspension Torsion bar
Speed (road) 46 km/h (29 mph)
Range 160 km (100 mi)
Armament 88 mm (3.46 in) Pak 43/3 L/71 (57 rounds)
Hull MG 34
Nahverteidigungswaffe (on later models)
Armor 40-100 mm (1.57-3.94 in)
Total production 415 (generally accepted figure)

Germans Tanks of ww2
Germans Tanks of ww2

Early Jagdpanther in Normandy
Early Jagdpanther, sPzJgAbt 654, France, Normandy, summer 1944.
Jagdpanther, France, 1944
Jagdpanther (early type) of sPzAbt 654, France, spring 1944.
Jagdpanther in the Ruhr pocket
Jagdpanther, 1st companie, schwere Panzer Abteilung 654, Ruhr pocket, March 1945.
Jagdpanther, 19th SS Panzerdivision
Early type Jagdpanther attached to the 19th SS Panzerdivision, 1944.
Jagdpanther of the Grossdeutschland Panzerdivision
Jagdpanther of the Führer Grenadier Brigade, Panzerdivision Grossdeutschland, fall 1944.
Another Jagdpanther in Normandy
Jagdpanther of the sPzAbt 654, Normandy, summer 1944.
Another Jagdpanther of the SpzAbt 654 Fr 1944
Late type, schwere Panzerjäger Abteilung 654, Normandy, France, summer 1944.
Jagdpanther during the winter of 1944
Jagdpanther, late type, unknown unit, France, winter 1944.
Jagdpanther during the Ardennes offensive
Jagdpanther, 1st Companie, 560th Heeres Schwere Jagdpanzer Abteilung DomBütt, Ardennes, 20 December 1944.
Another Jagdpanther participating in the Ardennes offensive
Jagdpanther (unknown sPzAbt), Ardennes, December 1944.
Jagdpanther in the Ruhr area
Jagdpanther of the sPzAbt 654, Ruhr area, March 1945.
Jagdpanther on the Eastern Front
Jagdpanther (unknown sPzAbt), Eastern Front, early 1945.
Another Jagdpanther on the Eastern Front
Jagdpanther (unknown sPzAbt), Eastern front, early 1945.
Jagdpanther in 1945
Unknown unit, Eastern Front, 1945.

All illustrations by Tank Encylopedia’s own David Bocquelet

Categories
WW2 German Tank Destroyers

7.5cm Pak 40 auf Raupenschlepper Ost (RSO)

Nazi Germany (1943) Tank destroyer – 80-90 est. built

From Hauler to Fighter

As the German army faced ever increasing numbers of Allied armour, more ways were found to place anti-tank weaponry on already existing chassis, in order to try and counter the Allied numerical superiority. The Raupenschlepper Ost (RSO) was no exception to the armed conversions that were built upon so many German vehicles at the time.
The decision was made in 1943 to take the well proven battle tractor and place a Pak 40/4 on its back, in order to provide more mobile anti-tank capabilities on the front line. After only a very limited amount were produced, it was made clear that this was one conversion that was not a successful fighting vehicle.
The original Raupenschlepper Ost tractor/carrier with its trailer.
The original Raupenschlepper Ost tracked lorry with its trailer.

Origins in the mud

The development of this vehicle is directly linked to the development of the RSO tractor built by Steyr from 1942 to 1945. This tractor was developed to meet the needs of the Wehrmacht for bringing supplies and weapons to the front lines in the poor conditions that were met on the Eastern front. Many of the battles there were far from any road, and if roads did exist, they were often in very poor shape, especially in spring.
It was soon found that existing vehicles were not satisfactory for bringing supplies and the newer larger anti-tank weapons through this adverse terrain, thus the designs for the RSO were created. By 1945, about 27,000 RSO tractors had been produced.
German 7.5 cm PaK 40 anti-tank gun being towed by a RSO Raupenschlepper Ost (East) Tractor, Yugoslavia, Sep 1943
German 7.5cm PaK 40 anti-tank gun being towed by a RSO Raupenschlepper Ost Tractor, Yugoslavia, Sep 1943
Development of an armed version of the RSO began only a few months after the tractor was in service. It was found that, due the rough nature of cross country driving, the sights of a gun being towed behind an RSO would be knocked out of calibration. Due to this, experimentation was undergone with mounting several guns on the bed of the RSO, including 75 mm (2.95 in), 105 mm (4.13 in) and 150 mm (5.9 in) weapons.
The intent would be to unload the gun at the front with a collapsible crane. This would allow for quick transport of weapons, but would still require time for the unloading and set up of the gun, and did not allow for any firing of the weapon while still mounted on the tractor. Though a few trial vehicles were made during these tests, none entered mass production
In the summer of 1943, the need for gun mounted on an RSO that could fire without having to remove the gun from the chassis was seen. A version made with a low silhouette cab (with only lower body protection for the driver and co-driver), along with collapsible sides on the cargo deck, was designed to carry a 75 mm (2.95 in) Pak 40/4 gun that could traverse 360⁰. When Hitler was shown this design, he ordered that it be put on high priority for production, as he saw in it an excellent balance of mobility, firepower and economics, which would provide an excellent tank hunter to the front.
On October 1st 1943, a prototype was presented to Hitler, after which production plans to produce 400 a month was put in place, despite there being no combat trials yet. However, very few were ever made. It is unknown how many of this RSO variant were produced, but it is generally believed to be less than 100.
Some information exists showing that Steyr was designing a new prototype immediately after the first design was approved for production, under the name “PzJag K43”. This would be a new generation of RSO tank killer that would have mounted the larger Pak 43, as well as have a wider chassis with a more powerful and less noisy engine. However, all work was halted in late 1943, when Steyr was ordered to stop working on tracked vehicle designs.
 The sides of the Raupenschlepper Ost (caterpillar tractor east) SPG folded down to produce a larger platform for the crew of the 7.5cm Pak 40 gun.
The sides of the Raupenschlepper Ost (caterpillar tractor east) SPG folded down to produce a larger platform for the crew of the 7.5cm Pak 40 gun.

Use in combat

The first deployment of this vehicle was with Army Group Center in January 1944. Some were sent to the 1st Ski-jäger Brigade, and some were sent to Army Group North, to Armee-Pz. Jägerabteilungen 751 and 752. In the 1st Ski Jäger Brigade, the RSO with Pak 40 was incorporated into the 13th Panzerjäger-Flak company, where it was deployed in 2 platoons with an infantry escort platoon.
Inside an RSO Pak platoon there were 3 RSO Paks, 1 supply vehicle, a Kübelwagen for the platoon commander and a Kettenkrad. In action, this vehicle was said to be less than desirable. It was slow, noisy and the engine had a tendency to overheat in warm weather. The lack of armor and high silhouette was also an issue, as many crews were lost when they attracted fire of any kind.
The small fighting platform made it difficult to work in an effective manner, and the floor lockers for ammunition storage were difficult to open when the weapon was in use. The vehicle earned the nickname “Rollender Sarg Ost”, a play on the RSO abbreviation. This nickname translates to “rolling coffin east”, reflecting the thoughts of the soldiers who operated it.
This fully tracked, lightweight vehicle was conceived in response to the poor performance of wheeled and half-tracked vehicles in the mud and snow
The RSO SPG fully tracked, lightweight vehicle was conceived in response to the poor performance of wheeled and half-tracked vehicles in the mud and snow.

An article by Eric Matzner

Sources

Nuts and Bolts Vol. 9. 7,5cm PaK40/4 AUF. GEP Selbstfahrlafette Raupenschlepper Ost (RSO). Peter Kwok, Heiner F. Doske.
RSO article. Germany’s Raupenschlepper Ost 7.5cm PaK 40/4 auf. RSO. Rick Lawler 2011.
Achtung panzer article
Article. 2015.
Article. 2010
RSO SPGs on www.tank-hunter.com
Surviving Raupenschlepper Ost list

Raupenschlepper Ost specifications

Dimensions (L W H) 4.17m x 1.7m x 2.49m (with canopy) (13’8″ x 5’7″ x 8’2″ ft.in)
Total weight, battle ready 5.2 tons (10,400 lbs)
Crew 4 (driver, commander, gunner, loader)
Propulsion Steyr V8 3.5l 8-cylinder, 85 hp
Suspension Leaf springs
Speed (road) 17 km/h (10.5 mph)
Range 250 km (155 mi)
Armament 75 mm (2.95 in) Pak 40/4 L/46, 28 rounds
Armor 5-10 mm (0.24-0.35 in)
Total production 80-90 in 1943-1944

Original Raupenschlepper Ost supply vehicle
The original Raupenschlepper Ost supply vehicle
Pak 40 auf Raupenschlepper Ost, vermicelli livery
Pak-40 auf Raupenschlepper-Ost, vermicelli livery
Pak 40 auf Raupenschlepper Ost, ambush camouflage, 1944
Pak 40 auf Raupenschlepper Ost, ambush camouflage, 1944.
Pak 40 auf Raupenschlepper Ost with its side panels panels down
Pak 40 auf Raupenschlepper Ost with its side panels panels down.

Video

Gallery

7.5cm Pak 40 auf Raupenschlepper Ost (RSO) with sides and canopy up
7.5cm Pak 40 auf Raupenschlepper Ost (RSO) with sides and canopy up
 Next Page Home Back www.MooreTanks.com Raupenschlepper Ost RSO 75mm PaK 40 German WW2 tank destroyer with canopy removed and sides down to increase the size of the fighting platform.
Raupenschlepper Ost RSO 75mm PaK 40 German WW2 tank destroyer with canopy removed and sides down to increase the size of the fighting platform.

Surviving vehicles

Raupenschlepper Ost RSO 75mm PaK 40 German WW2 tank destroyer
Raupenschlepper Ost RSO 75mm PaK 40 German WW2 tank destroyer at the German Tank museum in Munster.
RSO SPG at the German Tank Museum
Surviving RSO Pak 40 SPG at the German Panzermuseum in Munster without its canopy
Raupenschlepper Ost (RSO) 01 tracked lorry at the Auto + Technik Museum, Sinsheim, Germany
Raupenschlepper Ost (RSO) 01 tracked lorry at the Auto + Technik Museum, Sinsheim, Germany. Photo by Walter Schwabe.
Germans Tanks of ww2
Germans Tanks of ww2