Modern US Engineering Vehicles

M1150 Assault Breacher Vehicle (ABV)

United States of America (2008)
Combat Engineer Vehicle – Estimated 239 Built

The Assault Breacher Vehicle or ‘ABV’ is (as of 2018) the United States’ latest Combat Engineering Vehicle or ‘CEV’. It is built on the hull of the US Military’s currently serving Main Battle Tank (MBT), the M1 Abrams. CEVs were a concept made famous by the British in the Second World War with the AVRE (Armored Vehicle Royal Engineers), and since then, similar vehicles have been a part of every major army. The ABV is the first of such vehicles to see service with the US military since the M60 based M728 CEV was retired from service in the mid-to-late 1990s, and this vehicle’s direct predecessor, the remotely operated M1 Abrams-based M1 Panther II, was retired from service in the late 2000s.

The ABV was developed to meet the United States Marine Corps (USMC) requirement for a new CEV that could clear safe routes for traffic and infantry through minefields, obstacles, roadside bombs, and Improvised Explosive Devices (IEDs). In the late 1990s, the US Military were working on an Abrams-based CEV to replace the M728. This was known as the ‘Grizzly’. The US Army, however, decided to halt all development of costly, complicated and maintenance heavy CEVs. As such, the ‘Grizzly’ Program was canceled in 2001 with just one prototype completed. The US Marine Corps persisted though, funding the development of the ABV themselves. Between 2002 and 2006, six vehicles, prototypes and pre-production models, were built for testing.

The ABV, often known simply as ‘The Breacher’ finally finished its development in 2008. It first saw action in 2009 in Afghanistan, before formally entering service in 2010.

Ugly Twins: two ABV ‘Shredders’ of the Mobile Assualt Company, USMC 2nd Combat Engineer Battalion in Afghanistan. The thick white antennas rising above the vehicles are part of the ‘DUKE’ Electronic Countermeasure (ECM) system. This is a jammer that blocks signals to remote explosives or other devices to stop them detonating. Photo: Corporal Alejandro Pena

Base, the M1 Abrams

The M1 Abrams Main Battle Tank, named after General Creighton Abrams, entered service in 1980 and remains the United States’ front line tank as the M1A2 (from 1992). The regular tank is well armed and armored, with a 120mm cannon (which replaced the M1A1s 105mm) and depleted uranium mesh-reinforced composite armor.

Weighing in at 55 tons, it retains a high degree of mobility with a Honeywell AGT1500C multi-fuel turbine engine, generating 1500 hp and giving the tank a top speed of 42 mph (67 km/h). The tank rolls on a torsion bar suspension with seven road wheels, with the drive sprocket at the rear and idler at the front.

Battlefield Breacher

The ABV was specially designed to clear routes through battlefields heavily saturated with mines and other obstacles that would otherwise impede friendly forces from taking a designated objective. The vehicle can create a safe lane for friendly vehicles to travel on and can physically break through, or ‘Breach’, defenses for attacking forces. The ABV itself is based on the hull of the M1A1 model of the Abrams. These hulls were not specially constructed for the ABV, but were actually refurbished, General-Dynamics built-hulls taken from Army Surplus stocks. To reduce costs and construction time, the ABV uses many components from the Abrams, not least, the entire power pack and suspension systems. To this end, each Assault Breacher Vehicle costs US$3.7 million.

An ABV with Dozer Blade equipped of the Mobile Assault Company, 2nd Combat Engineer Battalion operates under the cover of M1 Abrams in exercises at Camp Lejeune, North Carolina, late-2015. Photo: Corporal Paul S. Martinez

Design and Equipment

The biggest change between the M1 tank and the ABV was the complete removal of the turret and accompanying armament and replacement with a large, armored superstructure. This superstructure has limited horizontal traverse, with an arc of just 180-Degrees (90° left, 90° right). The front of this superstructure is similar in shape to the Abrams’ turret face and is covered in Explosive Reactive Armor (ERA) blocks, a total of 53 individual pieces. This gives the vehicle protection from high explosive and shaped charge ordnance. The front plate of the superstructure (where the Abrams’ gun would be) is additionally protected by a spaced-armor pannel, placed about 4 inches (10 cm) from the face. It is to this panel that ERA is adhered to. There is storage on the side of the structure for spare track links, road wheels, sprocket wheel teeth, tow lines, and other equipment.

A Marine stands with his ABV at the Marine Corps Air Ground Combat Center in Twentynine Palms, California, in February 2015. This photo shows the limited traverse of the superstructure. Note the eyes painted on the skid arms. Photo: SOURCE

The vehicle is operated by just two personnel, the Commander and the Driver. The Driver’s position is typical of the Abrams, being front and center of the hull. The Commander’s position is located front and center in the superstructure under an armored vision cupola. Here is also where the vehicle’s only armament can be found; a single .50 Cal (12.7 mm) Browning M2 heavy machine gun. The mount is able to traverse and elevate via powered or manual controls that allow it to be aimed and fired ‘buttoned up’ (hatches closed, crew inside). The weapon is for defensive fire. For this purpose, there are also two banks of eight smoke grenade launchers on the left and right of the superstructure.


The British firm Pearson Engineering, based in Newcastle-upon-Tyne, supplied most of the equipment used on the ABV. This includes the mine plow, dozer blade, ordnance removal charges, and lane marking systems. All of this equipment is interchangeable and can be rapidly fitted or removed to fit mission requirements.

An ABV ‘Blade’ (left) and ABV ‘Shredder’ (right) of the 2nd Combat Engineer Battalion, await the commencement of Operation Black Sand in Shukvani, Helmand, Afghanistan, August 2011. Photo: Tankograd

When the mine plow is equipped, the vehicle is known as ‘The Shredder’, named after the famous villain from the Teenage Mutant Ninja Turtles franchise. When the dozer blade is equipped, it is simply known as ‘Blade’. These are not official names and were likely coined by their operators.

Line Charge Launchers

The most powerful pieces of mine clearing equipment on the ABV are its two-line charge launchers. The model used is the M58 Mine Clearing Line Charge, or ‘MICLIC’. These devices are also known as Linear Demolition Charge Systems or ‘LDCSs’. Line charge devices became popular in World War Two with the British ‘Conger’ and the later Cold War era ‘Giant Viper’. These devices are used to clear large areas of explosive devices or blast a path through obstacles. The M58 is placed in a large armored crate that, prior to its installment on the ABV, was usually towed around on a simple wheeled trailer behind M113A3 Armoured Personnel Carrier (APC) or sometimes even the M9 Armoured Combat Earthmover (ACE). There were other attempts to install it on a tracked chassis such as the M60A1 or M48A5 Armoured Vehicle-Launched Bridge (AVLB). The line charges installation on these vehicles led them to them being renamed ‘M60A1 (or M48A5) Armoured Vehicle-Launched MICLIC (AVLM)’.

In the case of the ABV, the whole crate is carried as one piece. The launchers are located at the right and left corner at the back of the superstructure under protective shields. For firing, the shields rise up via hydraulic rams. On the underside of the shields are launch rails, on which the rockets are placed. The rockets’ thrusters are placed at its nose and the rocket is fired forwards over the front of the ABV. As the superstructure has an albeit limited degree of traverse, the MICLICs can theoretically be fired in any direction in the traverse arc. Official guidelines, however, state that the MICLICs should only be fired directly forwards.

An ABV ‘Shredder’ with the right M58 MICLIC launcher (the long white shaft is the actual rocket) in firing position. In the rear of the photo, you can see the lane-marker system deployed. Photo:

The particular rocket and line charge used is the 5-inch MK22 Mod 4 rocket, trailing an M58A3 ‘Sausage link’ line charge, so-called because it looks like a string of linked sausages. The line is 350 feet (107 meters) long and contains 5 pounds (2.2 kg) per foot (30 cm) of C-4 explosives. A total of 1,750 pounds (790 kg) per line. If the MICLIC fails to detonate electrically, it can be manually triggered by time-delay fuses along the length of the line. The line is attached to the rocket via a nylon rope, and can reach a distance of 100 – 150 yards (91 – 137 meters), to put this is perspective, an American Football pitch is 100 yards long. When detonated, the charge can clear a lane 110 yards (100 meters) long, and 9 yards (8 meters) wide.

“When it detonates it sends a pressure wave inside the vehicle. It feels like someone walking up to you and shoving you.”

– Lance Corporal Jonathan Murray, ABV Mechanic, USMC. Interview with Workaholic Productions for the ‘Deadliest Tech’ mini-series.

Once fired, the launchers can be reloaded. There are large doors on the sides of the structure that swing forwards horizontally. This allows access to the crate that holds the explosive line which can be completely removed. Loading and removing these crates can only be done via crane. This role is usually fulfilled by the M985A1R Heavy Expanded Mobility Tactical Truck (HEMTT).

An M58 MICLIC (training version) sits outside of the ABV. It will later be craned into the empty void visible at the back of the superstructure. Photo: Tankograd

High Lift Adapter

The ‘HLA’ is a piece of equipment that is crucial to the ABV’s role on the battlefield as it allows the attachment of the mine plow and dozer blade. The adapter allows rapid interchange between the two pieces of equipment, and even possess an integral hydraulic jettison system should either the blade or plow need to be removed in case of emergency.

The High Lift Adapter (HLA) present at the front of the ABV. Photo: Pearson Engineering Ltd.

The adapter consists of an upper cross shaft that contains the lock-on point and jettisons pins, this part attaches to the upper part of the frontal armor plate. At the bottom of the adapter are anchor blocks that attach it to the lower glacis plate. The rig requires minimal personnel to maintain, attach and operate.

Mine Plow

With the Full-Width Mine Plow, or ‘FWMP’ equipped, the vehicle becomes known as ‘The Shredder’. The plow is 15 feet (4.5 meters) wide and is usually brought into operation after the deployment and detonation of the line charge. In less explosive-saturated areas, it can be used independently. ‘Full Width’ means the that the plow spans and clears a path the width of the host vehicle. The plow is attached to the front of the host and is pushed along in a raking action. It is operated by the driver via a Multipurpose Control Unit (MCU) in his position. The plow can be elevated and depressed for stowage and operation via hydraulic power provided by an inbuilt electro-hydraulic system.

“Being in the front, I feel the blast [of the MICLIC] harder. But, then again, we have the plow which is protecting me as well. That’s extra protection for me, so I feel pretty safe in here.”

– Lance Corporal, Rozo Corredor, ABV Driver, USMC. Interview with Workaholic Productions for the ‘Deadliest Tech’ mini-series.

The plow was originally designed by Pearson to meet requirements from the British Army, but it has found use in other militaries around the world, including the Finnish, Dutch, Danish and Swedish Military.

An ABV ‘Shredder’ tears its wy through the ground in a training situation. Photo: Military Today

The plow lifts and clears explosives out of the ground via teeth that penetrate the ground, and pushes them safely to the side away from the vehicle creating a safe path. The plow consists of three separate blades, one on the left, one on the right, and a small V-shaped blade in the center. The outer blades have nine teeth on, while the central smaller blade has five. Small extensions can be folded out on the sides of the outer blades to make a wider path. A constant plowing depth of 14 inches (36 cm) is governed by three skids on arms that reach over the front of the blades. These are connected via linkages to the blades and oscillate with the ground allowing the blades to closely follow the contours of the terrain.

Dozer Blade

Attaching the ‘Combat Dozer Blade’ or ‘CDB’ leads this vehicle to being known as ‘Blade’. It attaches to the front of the ABV utilizing the same hydraulic link as the mine plow. This piece of equipment enables the ABV to perform a number of tasks. These include carving out hull-down positions for gun tanks, digging gun emplacements, route denial (creating and filling anti-tank ditches), and improving bridge approaches. It can also be used aggressively to push barricades or debris from the path of attacking allies, and even clear inert unexploded ordnance.

ABV with the Combat Dozer Blade equipped. This vehicle belongs to Charlie Company, 1st Brigade Special Troops Battalion, 1st Armored Bridge Combat Team (ABCT) of the 2nd Infantry Division. ABVs of this unit are all painted in forest green. Since the scaling down of US forces in Afghanistan, more ABVs, not just from this Unit, have been repainted in Green.  Photo: Gordon Arthur

The vehicle’s headlights, which are usually placed directly on the bow, are elevated on stalks in the case of the ABV. This is so they can cast a beam over the mine plow or dozer blade and still provide light.

This blade is also produced by the UK based Pearson engineering and attaches to the same hydraulic link on the ABV as the FWMP. The blade is also in service with British Army and the Finnish Army

Lane Markers

To mark out safely cleared lanes, the ABV has an Obstacle Marking System (OMS), also known as a Lane Marking System (LMS), mounted on the engine deck behind the superstructure. The OMS uses an electro-pneumatic dispensing system that fires darts into the ground at controlled intervals of time or distance. As well as marking a safe lane, the markers are used to clearly mark dangerous obstacles or live minefields. There is one marker system on each flank of the vehicle. In between the two OMS systems are three stowage boxes for crew sundries. The driver is equipped with OMS Control Unit (OMSCU) in his position.

The left LMS system in deployed position. Photo: Rob Cogan/The Armored Journal

Fifty darts are held in the dispensers, with each dart being 3.2 feet (1 meter) long. The darts have high-visibility flags attached to the end, but these can be replaced with fluorescent, reflective, or LED-enhanced poles. The pneumatically fired darts can be triggered either manually or automatically. They can be used on multiple surfaces such as sand, soil and gravel, and can even penetrate asphalt and concrete.

The OMS is yet another piece of equipment produced by Pearson that is used on the ABV. It is also used in other militaries, including the British, Swedish, Dutch, and Canadian Armies.

Integrated Vision System

The IVS is a Closed-Circuit Television (CCTV) system. It is employed on the ABV which allows the Commander to safely view forward progress of plowing operations while remaining safely buttoned up in his position. There are around four cameras in total. One is placed in a ball mounting at the front of the superstructure, just in front of the Commanders position. This provides 360-Degree vision in daylight and at night with infrared (IR). This ball is also fitted with a laser rangefinder.

The roof of the ABVs superstructure. At the front, you can see the collection of forward facing cameras, including the ball mounted lenses. Just above the cheeks, you can see the fixed cameras, and at the far back, you can just see the top of the rear-facing camera. Photo: Ralph Zwilling

Above each cheek of the superstructure, there are fixed day-vision cameras placed at a roughly 40-Degree angle. Another day-vision and an infrared camera is placed at the rear of the superstructure, in between the MICLIC launchers. These are fixed and cover the rear of the tank.


The Breachers operate as part of ‘Combined Arms’ task forces and are assigned to and crewed by Combat Engineer Units. These task forces usually consist of regular gun tanks, Infantry Fighting Vehicles (IFVs), and wheeled vehicles. Although heavy at 55 tons, the ABV maintains a high degree of mobility that allows it to keep up with rolling units.

“The ABV can clear a route faster than dismounted patrols because it doesn’t actually have to find the IEDs. All it has to do is run through them. It keeps the engineers safer, inside of an armored vehicle. It speeds up the process almost tenfold.”

– Lance Corporal Jonathan Murray, ABV Mechanic, USMC. Interview with Workaholic Productions for the ‘Deadliest Tech’ mini-series.

The War in Afghanistan

Operation Cobra’s Anger

The first combat use of the ABV came on the Morning of December 3rd, 2009 as part of Operation Cobra’s Anger. The goal of this operation was to take Now Zad valley, in the Helmand Province, and disrupt Taliban supply and communication lines. A secondary objective was to effectively rescue FOB (Forward Operating Base) Cafferetta, a besieged US Marine Corps and Afghan National Army (ANA) outpost that was completely cut off, barring aerial transport.

An ABV of the 2nd Combat Engineer Battalion leads a Danish Leopard 2A5DK along a safe path during Operation Cobra’s Anger in Now Zad. Photo: Lance Cpl. Walter D. Marino II

Several ABVs were employed in this operation. The exact number used is unknown, but it is known that at least five ABVs were in Afghanistan in late 2009, though the US Military planned to deploy 52 by 2012. At least two are known to have the crew-assigned names of ‘Joker’ and ‘Iceman’. They were brought into action as it was known intelligence that the Taliban had saturated the area with roadside bombs and IEDs in anticipation of a Coalition assault. The aim after this assault was to push through an another Taliban Stronghold, Marjah, early in 2010.

Operation Moshtarak

On February 11th, 2010, two Breachers were deployed in Sistani where they launched M58 MICLICs at Taliban defenses in preparation for Operation Moshtarak. Two days later the Operation started. ABVs of the US Marines Corps 2nd Combat Engineer Battalion successfully dug and blasted multiple safely lanes through the numerous, heavily saturated Taliban minefields. This allowed Coalition forces to safely push into Marjah.

Operation Black Sand

In August 2011, the ABVs took part in Operation Black Sand in Shukvani, Helmand Province. It was a symbolic operation, with the USMC 2nd Combat Engineer Battalion deployed alongside the Republic Of Georgia’s 33rd Light Infantry Battalion. The operation objective was to take or destroy Lamar Bazaar. A collection of ramshackle buildings within a compound, it was a known Taliban IED storage area. The Taliban had effectively stolen the Bazaar from the local populace. As well as the stored IEDs, the area was flooded with planted devices. Previous, infantry focussed attempts were made to take the Bazaar, all of which failed due to the heavy IED threat and stiff Taliban resistance.

The Shredders were deployed. It is unknown how many took part in this operation, but at least two were active, one of which launched 35 MICLIC rockets into the Bazaar. This means 61,250 pounds/31 tons (28,000 kg/28 tonnes) of C-4 was detonated at the Bazaar. As one may expect, the compound was completely leveled. Even with the destruction of the Bazaar, the local civilians were happy to see the back of the Taliban and a new Bazaar was later constructed, with a little help from the Marine Engineers and Georgians.

Other Actions

Not much more is known about their use in Afghanistan. There are brief mentions, however, such as a deployment in Kajaki, Helmand province in 2011, where they were used to clear a safe route through a known IED-saturated area. They were also used to deny the Taliban useful terrain e.g., destroying cover and filling ditches, either by use of the MICLIC or Dozer Blade. They also served in Operation Dynamic Partnership in Shurakay, Helmand Province in February 2013 in support of the main attack forces.

An ABV and M88A2 HERCULES Armored Recovery Vehicle (ARV) of the Mobile Assualt Company, USMC 2nd Combat Engineer Battalion enter the staging area for Operation Dynamic Partnership. The ‘DUKE’ antennas can be seen in this photo. Photo: Corporal Alejandro Pena

South Korea

In the summer of 2013, six ABVs were deployed to South Korea and are attached to the 2nd Infantry Division. The vehicles would allow the Division to clear a path through the heavily mined Demilitarized Zone that separates the North and South should things escalate on the peninsula. A small detachment of Mine-Resistant Ambush-Protected (MRAP) vehicles was previously deployed for the same reason. North Korea accused the US of deploying vehicles that could cross the DMZ and attack the country. The MRAPs were soon withdrawn from the South anyway, as they were found to be unsuitable for the terrain in question. For unknown reasons, North Korea did not react to the deployment of the ABVs.

Combined Resolve III

In summer 2014, three Assault Breacher Vehicles were dispatched to Germany for exercises. That October, they took part in the Multinational Exercise Combined Resolve III at the Joint Multinational Readiness Center in Hohenfels.

Trident Juncture

Between October and November 2018, ABVs were part of the American contingent that took part in the largest NATO military exercise since the Cold War, ‘Trident Juncture’. The exercises took place in Norway, with over 50,000 participants from 31 countries.

This ABV ‘Blade’ taking part in ‘Trident Juncture’ managed to ditch itself on the side of a narrow Norwegian road. Marines from 2nd Tank Battalion, 2nd Marine Division, came to the rescue and managed to recover the ABV with two of their Abrams. Photo: Cpl. Kevin Payne, DVIDS


The ABV is still a brand new vehicle in the grand scheme of things, it remains to be seen what other deployments the Assault Breacher Vehicle will see with the US Marine Corps. It is also unknown what upgrades and equipment may come in the future. At the moment, though, it remains one of the most advanced vehicles of its kind in the world.

The Assualt Breach Vehicle ‘Shredder’ in the colors it would have served in during its deployment in Afghanistan. The vehicle is in full mine-clearing configuration. The Full-Width Mine Plow (FWMP) is installed on the front of the vehicle, the M58 ‘MICLIC’ Launcher is in firing position, and the Obstacle/Lane Marking System (O/LMS) is deployed.

An ABV ‘Blade’ in the forest green color that a number of vehicles have been repainted in since their return from Operations in Afghanistan. This vehicle is in simple dozing configuration, with all mine-clearing equipment retracted. The vehicle is equipped with the Combat Dozer Blade’ or ‘CDB’.

Both of these illustrations were produced by Ardhya Anargha, funded by our Patreon campaign.


Dimensions (L-W-H) 25’11” (without equipment) x 11’11” x 9’5″
(7.91m x 3.65m x 2.88m)
Total weight, battle ready 65 short tons
Crew 2 (Commander, Driver)
Propulsion Honeywell AGT1500C multi-fuel turbine 1,500 shp (1,120 kW).
Transmission Allison DDA X-1100-3B
Maximum speed 67 km/h (regulated to 65 km/h)
Suspensions High-hardness-steel torsion bars with rotary shock absorbers
Armament 1x Browning M2HB .50 Cal (12.7mm) Heavy Machine Gun
Equipment High Lift Adapter (HLA)
Full Width Mine Plow (FWMP)
Combat Dozer Blade (CDB)
M58 Mine CLearing Line Charge (MICLIC)
Obstacle/Lane Marker System (OMS/LMS)
Armor (hull/turret front) 600 mm vs APFSDS, 900 mm vs HEAT + ERA Blocks
Production estimated (all combined) 239

Links & Resources

Presidio Press, Abrams: A History of the American Main Battle Tank, Vol. 2, R.P. Hunnicutt
Haynes Publishing, M1 Abrams Main Battle Tank, Owner’s Workshop Manual, Bruce Oliver Newsome & Gregory Walton
Sabot Publications, Warmachines 01, M1 ABV Assault Breacher Vehicle
Tankograd Publishing, M1 Abrams Breacher: The M1 Assault Breacher Vehicle (ABV) – Technology and Service, Ralph Zwilling & Walter Böhm
Osprey Publishing, New vanguard #268: M1A2 Abrams Main Battle Tank 1993-2018, Steven J. Zaloga
Pearson Engineering Ltd.
Photo Walkaround by NACM Curator, Rob Cogan, on The Armour Journal: LINK
Michael Moore, Amateur US Military Historian, US Army, Retired.

M9 ACE Armored Combat Earthmover In Detail
Warmachines: M1 Assault Breacher Vehicle (ABV)

By Sabot Publications

Warmachines 01 is a visual reference of the U.S. Army and U.S. Marine Corps M1 Abrams-based assault breacher vehicle. This is the first book in the Verlinden Publications relaunch of the Warmachines series of photo-reference books. It contains 64 pages of full color, large format photos of the ABV in combat and training environments. Includes walkaround detail shots as well as weathering shots of the ABV with the full-width mine plow and the combat dozer blade.

Buy this book on the Sabot website!

By Mark Nash

X: @mr_m_nash.
120 articles & counting...

2 replies on “M1150 Assault Breacher Vehicle (ABV)”

Leave a Reply

Your email address will not be published. Required fields are marked *