Cold War British ATGM Carrier Prototypes Has Own Video


United Kingdom (1956)
Heavy Tank Destroyer – Design Only

Cerebos was a project designed by the 7th Tank Technical Officers (T.T.O.) Mechanical and Gunnery AFV design exercise held at the British Royal Armoured Corp (R.A.C.) School of Tank Technology (S.T.T.) in 1956. In the study, the designers were tasked with coming up with a heavy tank destroyer using guided anti-tank missiles as its primary offensive weapon. It had to be able to operate on the front lines of a European conflict, have relative immunity from Soviet guns at combat ranges, and a very high chance of scoring a direct hit and killing any Soviet vehicle of the day.


The concept of a heavy and super-heavy missile vehicle had already been on the minds of British AFV designers for a few years during the early part of the Cold War. The Anti-Tank Guided Missile (A.T.G.M.) was a relatively new technology in an era when tank guns were still relying on ranging machine guns for calculating the distance to the target. The ability to effectively engage a tank at twice the effective range of such a gun and to effectively track and guide the missile to the target was highly desirable. This fact, combined with the huge leaps in armor penetration capabilities from shaped-charge (SC) technologies used in High Explosive Anti-Tank (HEAT) type warheads, especially compared to ‘conventional’ anti-tank ammunition of the period, made many think the era of the conventional armored tank was over. This was simply because, using conventional armor technologies, no tank could hope to survive against HEAT warheads such as the French SS.10, Soviet AT-1 Snapper, and later the Mosquito or Swedish Bantam. In order to stop such weapons, steel armor would need to have been over 500 mm thick, which in turn would have led to impractical machines. One result of this technological shift away from conventional armor was a generation of very lightly armored main battle tanks like the German Leopard. Whilst this shift was recognised early in Western nations, despite projects like the British Conqueror and some American heavy tank/tank destroyer projects, it took longer to be recognised in the Soviet Union, at least in the eyes of the West. Tanks like the IS-3 and T-10 loomed large in the imagination and nightmares of Western planners along with some incorrect assessments of the armor of a new generation of Soviet medium tanks. This meant that new means of countering this Soviet armor were needed.

The debate over the end of the tank has been waged since almost the very beginning of the weapon. For each new anti-tank weapon, a new defense innovation was found and, conversely, for each new step-up in armor, a new weapon to defeat this armor was found. In this way, to a broad extent, the evolution of anti-tank weapons very much reflected the evolution of tank armor. Within this context, there are few evolutionary leaps that were as profound in tank terms as this first decade or so after the end of WW2. The A.T.G.M. had gotten to the point where it was closer to forcing the tank into obscurity than ever before and, were it not for the vast fleets of tanks in Soviet service that remained an active threat forcing NATO to maintain its own significant fleet of tanks, armored warfare may have taken a very different route.

In the meantime, all nations were still churning out regular tanks expected to fight other tanks and so, much like the Second World War, tank destroyers were still being developed and built with the sole aim of breaking up enemy tank formations at long range. For the British, the appearance of heavy Soviet armor and the prospect of large enemy armored formations posed a particular threat. Many of those vehicles were virtually immune to the UK’s best tank-guns then in service and in such large numbers that even if they could match Soviet armor with British firepower they could still be overwhelmed.

There was little the British could do to counter the enormous numerical advantage of the Soviet forces in Europe but there was something which could be done about the guns and this fed into the motivation behind the development of the Royal Ordnance L7 105 mm rifled gun and eventually the L1 120 mm rifled gun too. Despite some heavy Anti-Tank concepts in the UK, the 7th T.T.O. Course opted instead for an A.T.G.M.-based Anti-Tank platform over a gun-based solution. The weaponry for this option consisted of a version of the Malkara missile, and this, it was felt, would provide the offensive power required to counter the Soviet threat. It also provided the additional benefit that the avoidance of a turret allowed all available protection to be focussed on the hull instead and all for less weight than a conventionally armed and armored gun-tank.


This was the context and logic behind the Cerebos, a turretless guided-missile tank destroyer with heavy armor. It was intended to operate on the front lines, have enough protection to withstand strikes from enemy tanks using conventional guns, and ideally use the chassis of a vehicle already in service as a platform. It was desired to have a missile able to destroy the heaviest Soviet vehicles then known in service or considered to potentially enter service. An ideal rate of fire of four rounds per minute was requested, with a minimum of two rounds per minute, with two missiles ready to fire at any time.

The model of Cerebos shows a well-shaped front which was heavily armored and the vertical launching pods for the missiles. The missile shown on the ‘stick’ is merely illustrative as they were launched internally and vertically not from this elevated position.


The goal was to reuse, as far as possible, the hull of an existing vehicle and Cerebos did just that and was based around a heavily modified Centurion tank. This meant a high degree of commonality of parts between Cerebos and the standard battle tank of the British Army of the day, which would reduce the logistical burden of the vehicle. The modifications, though, were extensive. Instead of the sloped glacis of the Centurion, Cerebos used a steeply angled ‘pike’ type nose, similar in style to that on the Soviet IS-3 tank. The driver sat along the centreline of the tank with a forward observation window cut directly out of the armor. The commander sat directly behind him, and the loader sat even further back on a swivel chair that allowed him the freedom of movement to assemble the missiles.

The missile bin had to be as equally protected as the vehicle itself and yet maintain a potential 360° arc of fire. This was somewhat problematic, as adding a conventional missile rack on the top of the vehicle would add not only excessive weight but would also result in a large and conspicuous target that would be vulnerable to small arms fire, shell splinters, etc. It would also be heavy, requiring dedicated hydraulics just to operate. To overcome these issues, the designers had the missile bins located inside the hull of the vehicle in a vertical arrangement, with 5 additional missiles stowed vertically running alongside the left and right sides of the inner hull. On firing the missile, the silo roof would fold open in two triangular parts. The weapon was then fired and guided on to its target by the commander. Once the missile was away, a new one was selected and attached to what amounts to a ‘potter’s wheel’ type base. This base rotated 360 degrees in the missile chamber, with the four fins being added from a separate supply located in front of each missile. This might seem odd as an idea, but the fins were the part of the missile which increased their storage volume and this semi-assembly of the missile attaching the fins meant that a larger number of missiles could be stowed inside the tank.


Cerebos was based on the Centurion but it was better protected from enemy fire than the Centurion. Sporting heavy frontal armor with a glacis plate 120 mm thick angled back at 65° and a lower front plate 120 mm thick angled at 55°, the Cerebos was felt to be well-enough protected to be able to take any reasonable enemy fire which might be forthcoming from the Soviet tanks of the day. In more conventional UK armor terms, the sides were still quite weak though, with just 25 mm on the upper sides (at 8°) tapering to 20 mm (at 10°) on the lower hull sides. The roof and rear were 25 mm thick, just enough for protection from small arms fire and shell bursts. The belly plate, just 20 mm thick, was sufficient to provide some protection from landmines but the focus of armor was on the front, facing the enemy, making the best use of the weight allowance available for maximum effect.


Power for Cerebos was provided by a 9-liter Jaguar 90° V8 petrol engine delivering 350 b.h.p. at 3,750 rpm connected via a Merritt Brown 6-speed (4 forward and 2 reverse) gearbox. Drive was delivered, just like the Centurion – to the rear sprockets. This engine was expected to permit the 21-ton (21.3 tonnes) Cerebos to achieve a top speed of 28 mph (45 km/h) and operate for a maximum range of 220 km at 14 mph (22.5 km/h).


The primary armament proposed for Cerebos was a Manual Command to Line-Of-Sight (M.C.L.O.S.) type anti-tank missile that looked somewhat like a slightly smaller and sleeker Malkara missile, measuring 5 ft. (1.5 m) long and 10 inches (254 mm) in diameter. Unlike the High Explosive Squash Head (H.E.S.H.) warhead on the Malkara, this 20 lb. (9 kg) warhead was a shaped charge High Explosive Anti-Tank (HEAT) type. The total missile weight was expected to be 85 lb (38.5 kg) and these would be launched vertically from within the missile tube. Once assembled with its fins, it was ready for launching and this could be done whilst a missile was already underway as the targeting was being carried out by the commander with missile assembly taking place independently.

A pair of launchers and 12 missiles (two already assembled and ready to fire, with another ten stowed) could be carried. Although no performance data for these missiles was given, it can be estimated from the diameter of the warhead and the performance of contemporary missiles to achieve a penetration of approximately five times its diameter, which would equal about 750 mm of armor plate – more than sufficient to defeat any known Soviet tank in service at the time.

The maximum range for the missile was just as impressive as the anti-armor performance expected – far exceeding the range available from a conventional tank gun. Cerebos was to be able to engage targets at ranges of up to 6,000 yards (5.4 km), although the missiles did have a minimum safe distance as well – 500 yards (460 meters). With a flight-speed of 350 feet per second (107 m/s), the missiles had a potential maximum flight time of about 50 seconds. For ease of stowage, the missiles were kept without their fins. The gunner would have to assemble the bare missile, attach the fins individually by means of the snap-on fasteners and then load a missile into the missile bin. This whole process was estimated to take not more than 2 minutes per missile. This would mean (assuming two were already loaded) that up to 4 missiles could be fired in a 4-minute window.

Secondary armament for Cerebos was primarily for self-defense and consisted of a single Browning .30 caliber (7.62 mm) machine gun remotely operated from within the hull with a 360° degree arc of fire and provided with 4,250 rounds of ammunition. Six No.36 smoke dischargers were provided, with 3 per-side, and the crew was provided with grenades and small arms.

Side view of Cerebos showing the 5 unassembled fin-less missiles on one side of the compartment. Another 5 were along the right-hand side as well. With two in the bay ready to go, Cerebos had 12 missiles. Note the curvature at the front is unintentional and merely a result of the curvature of the original paper on which the plan was printed and bound.


For its time and era, the wings being clipped on was nothing new and this type of missile-build-before-launch concept was also to be added into the FV4010 heavy missile vehicle, as the later fold out missiles and overall lighter materials were still some years away. Two flaws not raised in the original documentation but more observable with hindsight are the lack of a telescopic mast or periscope allowing firing from the reverse side of slopes and the poorly placed second cupola that had much of its view blocked by being located behind the first. Other issues are the commander acting as the missile gunner, guiding it to its target, placing undue stress, and preventing him from monitoring the battlefield. The Cerebos was no more than a design project and never built, however, many of the ideas and features later appeared on the Malkara launching FV4010.

The Cerebos heavy missile tank destroyer. The vehicle is in travel mode, with the missiles safely within the hull. Notice the very heavily sloped pike-shaped front. Illustration by Yuvnashva Sharma, funded by our Patreon campaign.

Bovington Tank Museum Archives, STT section, Cerebos box

Cerebos Specifications

Dimensions (L-W-h) 21ft 5.5 inches x 9ft 10 inches x 8ft 4 inches (6.53 x 3.00 x 2.54 m)
Crew 3 (commander/gunner, driver, loader)
Propulsion Jaguar 9 liter 90° V8, 350 bhp
Speed (road) 28 mph (45 km/h)
Ground Clearance 17 inches (0.43 m)
Track Center Distance 8 ft. 4 inches (2.54 m)
Length of Track on Ground 14 ft. 7 inches (4.45 m)
Normal ground pressure 8.4 psi (57.92 kPa)
L/C ratio 1.75
Vertical obstacle crossed 3ft 8 inches (1.12 m)
Gap crossed 7ft (2.13 m)
Armament Manual Command to Line-Of-Sight (MCLOS) ATGM
0.3/7.62 mm MG
Maximum, Minimum Missile Range 6000 yards/5.4 km, 500 yards/457 meters
Missile Velocity 350 fps (107 m/s)
Ammunition 12 High Explosive Anti Tank Missiles
Armor Front: 120 mm @ 65 degrees
Sides: 25-20 mm
Rear 25 mm
Bottom 20 mm
Cold War British ATGM Carrier Prototypes

FV4010 & Malkara

United Kingdom (1954-1960)
Heavy Tank Destroyer – 3 Hulls Built

The story of FV4010 and its missiles begins in the strange post-war phase, following the collapse of the Third Reich and the Rise of the Soviet Union as the perceived global antagonist. It had long been appreciated during the Second World War that the Soviets were capable of making excellent tanks and in large numbers but despite a few mutterings at the top levels nobody was quite prepared for how quickly relations between the Allies would cool off and then fall apart altogether. The first real taste of what the UK might face came during the victory parades which passed through Berlin in 1945. The US and UK had already displayed their armor when columns of IS-3 tanks drove past the spectators and they came as quite the shock.
Those that were able to get a good view, including a number of intelligence officers, noted that these new tanks were, at least on paper, far more powerful and numerous than anything the Allies had encountered, including the German heavy tanks which had caused them quite a headache. With their excellent armor, large 122mm guns, good mobility, and huge production capacity, the IS-3 sent both the UK and the US into a tank designing frenzy focused on how to combat these should either side decide to mobilize.
Two distinct lines of thought began to evolve. The first involved the use of conventional kinetic energy (KE) guns to defeat the Russian armor. These would be based on the L1 120mm gun, itself based of the US M58, and a temporary, but not satisfactory solution had been found in the FV4004 Conway tank destroyer. An even larger platform was proposed to be built on the FV200 chassis known as the FV215 Heavy Tank Destroyer wielding the L4 183 mm Anti-Tank gun, the largest dedicated tank killing gun ever made. A more financially prudent line of reasoning was to use Anti-Tank Guided Missiles (ATGM’s) on tank chassis already in service.

Early and late FV4010 heavy missile tank destroyer versions. Drawings by Ed Francis based on original documents held at the Bovington archives.


FV4010’s birth begins sometime around the 32nd FVDDL (Fighting Vehicle Design Department Liaison) report. In the report, the notion of a mobile platform developed to mount very large guided missiles able to tackle any Soviet tank in service or likely to enter service in the foreseeable future is mentioned. Design work had already been carried out by several FVDD groups and Tank Technology Officers at the School of Tank Technology (STT) in the UK. These designs, such as the Cento, Apollyon, and Cerebos, were exercises for just such a vehicle and, as such, a lot of preliminary work had already been carried out.

The 34th FVDDL report dated July 1955 recorded that preliminary design investigations into a tank-sized vehicle with the FV or Fighting Vehicle reference number 4010 could soon be carried out. No clear description is given at this stage other than it should ideally carry 20 guided weapons or if this were not advisable that a smaller tracked vehicle, able to carry 3 or 4 missiles, should also be considered. This smaller version would turn out to be the FV426. The vehicle and its missile launching arm were actually built and the mock-up missile tested for weight and balance. Sadly, it ended up as a range target at Lulworth before being recovered by the Tank Museum, which promptly chopped the launching arm of and left it as a semi-restored FV400.
The hull chosen for FV4010 was to be Centurion based, much like those in the STT papers, although a smaller version using the A.34 Comet chassis was considered. The Comet version was to mount three to four missiles on launching rails on a turretless hull. One such vehicle was reportedly sent out to Libya in the 1950s for testing. However, to date, no further reliable information or photos have surfaced. The one thing the FV4010 and FV215 did have in common was that both platforms were to be heavily armored as both were built around the weapon first and foremost, which in this case was the Malkara missile.

Two original drawings of the early Centurion Mark III-based FV4010 missile tank destroyer. Source: User Ogopogo on the Facepunch forums, initially discovered by Mike Verrel

The Missile

The development of the Malkara missile, a heavy anti-tank wire-guided weapon system, began in 1952 at the Government Aircraft Factory (GAF) in Australia, along with the Aeronautical Research Laboratory (ARL) and Weapons Research Establishment (WRE) which were working on a heavy missile named Project J. This was a radio-guided 6ft (1.8 meter) long, 8 inch (203 mm) missile with a 55 lb warhead and a total weight of 173 lb (78 kg). Australia had also been working on a smaller ATGM known as Project E, a 70 lb (31.7kg) wire-guided missile with a 15 lb 4.5 inch (6.8 kg – 114 mm) HEAT warhead and a maximum range of about 2000 yards (1.8km).
The missiles creator was Dr. William Butement CBE who had taken over the role as the first Chief Scientist in the Defence Scientific Service of the Australian Department of Supply and Development in April 1949. Before this, he had been living in the UK, serving the Crown during the Second World War where his work on using radar to track targets and direct searchlight made him just one of the many unsung heroes of that war.
Although he assumed a more managerial role during the initial Malkara development, he was responsible for the semi-solid paste fuel used to power the missile and is oft quoted as giving the platform the name Malkara, an Aboriginal word meaning shield. The weapon’s guidance and control were developed by Prof J.M. Evans OAM, a research scientist specialising in the stability and control of flight vehicles at the ARL, and Chief Designer of Malkara’s shape and performance.
The UK, meanwhile, was running a parallel project called Heavy GW (Br), as well as a smaller HEAT based version named Light GW (Br), similar to projects J and E. Heavy GW was to mount a 7.5 inch (190 mm) 60lb (27kg) HESH warhead. With a 2ft long warhead, this missile was going to measure in at some 8ft (2.4 meters) long! With both teams working and operating on near identical projects, it was decided to drop one and merge with the Australian project. Those working on the UK’s version were sent over to Australia to begin testing at the Woomera missile range, a journey that still took over a week by air alone.
The Malkara missile itself was and remains the largest wire-guided anti-tank missile of its type ever made. Its 8 inch (203 mm) HESH warhead has a whopping 56 lbs (25 kg) of explosive filler alone. To put that into perspective, a modern 155mm HE shell has about 15 lb (6.8kg) of filler. This ensured any target struck by Malkara was, if not destroyed outright, left unable to take part in the battle any longer. Later tests against Conqueror MBT range targets cracked the front glacis in half. The UK ordered 150 of these missiles outright.

A Carrier For the Malkara

With the missile in place, a series of design projects were started and a rough idea of what they wanted was drawn up. The first iteration was based on a Mk.III Centurion and consisted of a well-sloped casemate mounted to the rear, with the engine placed forward. The missile was assembled inside and came out at a 45 degree angle from the rear, facing up. This version often creeps up on the internet as being the actual final platform. A simple glance would inform most that there would barely be enough room for the crew, let alone 20 missiles. The final design mentioned below would be built on a Centurion Mk.VII.
Before they got to chopping up perfectly good tanks, the team decided that the best approach would be to build up the basics of the fighting compartment and how it would all work. Unlike the Americans, who had the budget to build a vehicle from scratch only to then discover it didn’t work, the UK placed a lot of emphasis on detailed drawings, followed by wooden models, mockups, soft steel shells and then production. Using this approach, each phase could be stopped easily at minimal cost, obvious faults found and inevitably allow for the usual political interference that comes with any AFV development.

One of the few images of the FV4010 available online. Although often presented as the final version, this is an earlier variant based on the Centurion Mark III. Source: Warthunder forums.
The team decided to build the fighting compartment as a complete module with launching arms and stowage, but the rest of the vehicle could wait as it was not expected the Centurion would change so radically over the next few years. In the meantime, the mockup was mounted on a standard 4 wheeled truck chassis with a generator to the front for power, where the engine would be in any finished design. This, it was reasoned, would allow them to iron out any faults and issues with launching and other parts of the vehicle.
The FVDDL report number 35 dated June 1956, noted the first of the mock-up hulls was ready to go to Australia and it was planned to have at least three of these mock-up’s built and the firing platforms then tested in both Woomera and at the Lulworth ranges in the UK. They were fully fitted and furnished inside to the FV4010 specs, with every detail in place including spare missiles (wooden), crane arm, cupolas and even provisional stowage. The first rig was mostly made of wood and the second of mild steel armor. FVDDL report 36 dated June 1957 states the mobile test rig was now equipped to fire both Malkara and Orange William and a second rig was nearing construction for Malkara trials for early 1958.
Meanwhile, back in Australia, FVDDL report 36 from June 1958 states that test rig one had expended all its munitions and test rig two was now up and running with some 150 missiles to be fired at the Long Range Weapons Establishment, Woomera. These missiles were essentially duds made out of wood and concrete. After firing, they could be recovered and reused, with only the rockets motors replaced.
Unlike the first rig, the stage 2 rig was armored all round and had a working butterfly hatch on top. This allowed one missile to be fired onto the target while a second was being prepped below. Once fired, the launching arms would rotate around 180 degrees on a pair of centrally mounted pinions and a new missile would be in the launch position.
Each missile came in several parts for storage, with the body and wings separate. Each of the four main wings and four secondary fins were clicked onto the missile, once the butterfly launcher had rotated a cable was pulled out and the missile was now armed. The total time for each missile to be laid, fitted and rotated into firing position was 15 seconds. The whole rotation was powered, although it could be done by hand in an emergency. Once on the hull roof, the missile could be panned left and right 30° from within the hull.


Assorted Malkara development papers, Bovington
Assorted FV4010 development papers, Bovington

Malkara missile and one of the FV4010 test rigs in the bottom half. The images were taken in June 1960 at the Royal Armoured Corps Centre in Lulworth. Source: Ed Francis

Loading/Firing Procedure

1) Attach missile to underside launching plate, allow missile amplifier plate to heat up – max 10 seconds.
2) Connect firing circuit connection
3) Connect wings and fins
4) Missile control wire plug placed in the clip on the underside of the missile.
5) Launching plate to be turned over-loader makes sure arms are clear
6) Control wire and plug to be transferred from the plate to roof point
7) Connection points retract
8) Programmed flight data added, wind speed, temp, elevation etc.
9) Missile fired, launcher plate revolved to present fresh missile.
Three mounting points were provided for the missile, two fore and one to the rear. The forward mounts were located just behind the wings and consist of pins projecting from the body of the missile. The rear pin provided lateral restraint, a further forward mount was designed by GAF to help stabilise the missile during rough cross-country travel experienced in Australia. The pins were designed to be strong enough to allow the missile to undergo the 180-degree swing from hull to the deployment position but weak enough to offer little resistance if the missile fired and they were still accidentally in place.

Rig 3

Once the second rig had completed its trials, the third and final rig was to begin testing. This would have had a full crew and be fully armored to the levels required of it when coupled with Centurion. Engine, tracks, suspension, fuel capacity and width were to be the same as Centurion Mk.7, with the length and height to be the minimum possible.

Malkara missiles mounted on a Humber Hornet at the Bovington Tank Museum. The blue on the warhead indicates that this was a practice round. Source: User growler2ndrow on Flickr.
The third rig was to be as close as possible to the real thing. The engine was to be mounted at the front with the louvers and decks moved over. Towards the rear was a large raised superstructure, heavily armored and able to stop any Soviet return fire with 8 inches (212 mm) at 45° for 300 mm effective plate over the front of the superstructure. The lower nose plate was 4 inches 101 mm at 45° for 142 mm effective armor. Upper hull front was 6.5 inches at 50° for 256 mm of armor. Sides were just 2 inches (50 mm) at 12° with the upper sides and rear at 17 mm and 12 mm respectively. 6 mm skirting plates were attached as standard.


The project stopped due to two main issues. The first was that Malkara was a bit of a black sheep in the missile family,
Then, as now, politicians tried to find faults in projects that they had little influence over, and rival firms with strong bonds were able to put a lot of influence over these men. Secondly, the project had moved back to the UK and despite several attempts to run demonstrations at Kirkcudbright, on each occasion the demonstration was put off due to bad weather and strong winds, and each time new invitations were sent out less people would respond. The media then waded in and highlighted issues which were duly unfair or outrightly not true but public opinion and support had gone.
With newer projects and firms, notably Vickers, putting more pressure on the government to support their new missiles, like the Vickers Vigilant, the end of Malkara seemed certain. Those in service were instead used on Humber Hornet as mobile air portable heavy anti-tank units in the Parachute Squadron, Royal Armoured Corps which came into existence on 3 February 1965, raised from cadres of Cyclops Squadron 2nd Royal Tank Regiment and The Special Reconnaissance Squadron (SRS). Malkara, however, was not quite finished. The Australians redesigned and altered the bits they had and ended up with the Ikara ship-borne long-range anti-submarine guided weapon that was developed for the Royal Australian Navy.
The Royal Navy had also shown interest in Malkara and a close-range anti-ship missile and although it was never taken in for direct service, it did end up forming the basis of the Sea Cat missile after Short Brothers of Belfast converted it over.

Malkara missile during testing in South Australia, at the Woomera Rocket Range in 1959. The flare on one of the fins, that was used for aiming, is visible on the lowest fin. Source:

All Details for Malkara Unless Stated Otherwise

Malkara specifications

Project J Max range 2000 yards
Malkara Max range 1500 yards Mk.I and 4000 yards Mk.II
Malkara min practical range 400-500 both Mks
Project J min range 300 meters
Max direct fire unguided (loss of controls) 1000 meters
Boost acceleration 22g
Boost duration 0.6 secs
Sustainer duration 25 to 4000 yards
Velocity during sustained flight 137 m/s
Roll stabilized 2 pairs of wings
Control type Command Cartesian
No of wire cores 4 cores (2 on service model)
Control type of signal Shaped D.C.
Launch angle 3.5° above LOS target
Fuse type Eclectically operated
Fuse arming distance 250 yds
Arming delay 2 secs
Power type thermal batteries
Ground equipment sight monocular x 10
Cone diameter 8”
Explosive weight 56 lbs
Chance of hit on stationery 75% at 500 m 95% at 3000 m on 2.3 m sq target
Chance of hit on moving target similar to above with 2.3×4.4 m at 4.5m/s crossing
Malkara Penetration 150 mm at 60 degrees equivalent
Project J Penetration about the same
Max angle of fire +20/- 10 degrees
Firing weight 189.5 lbs
½ cruise wt 172.5 lbs
Roll 0.450 lbs. ft. sec2
Pitch 15.7lbs. ft. sec2
Yaw 15.7lbs. ft. sec2
Malkara Length 77 inches
Project J length 75 inches
Wingspan 31 inches
Wing weight 3 lbs each
Rate of Fire 4 rpm
Lethal blast radius > 100 meters
For information about abbreviations check the Lexical Index

Illustration of the Mk.III FV4010.

Illustration of the Mk.V FV4010
Illustrations by Tank Encyclopedia’s own Bernard ‘Escodrion’ Baker. Paid for by our Patreon Campaign.