WW2 German prototypes


ww2 German half-tracks Nazi Germany (1935-39)
Heavy Tank – 3 Hulls & 1 Turret Built

The Tiger I and the Tiger II are some of the most famous tanks in the whole history of armored warfare. These behemoths of World War Two have captured the imagination and attention of many generations of tank lovers and armor researchers. However, while the Tiger was the product of a rushed development following the lessons of Operation Barbarossa, the German quest for a heavy breakthrough tank stretches back to 1935, with the design process of a 30 ton Panzer that would become the Durchbruchswagen.

A Long Incubation

The first mention of what would eventually become the Tiger series appears in a report from October 1935, at a time when Germany had barely started building the Panzer I. General Liese, the head of the Heeres Waffenamt, the German Army Weapons Agency, stated that:

“The initial velocity of the 7.5 cm gun must be increased to about 650 meters/second to be effective against the Char 2 C, 3 C, and D. This type of increase requires the design of a completely new Panzer. Based on rough calculations, armor protection up to 20 mm thick (still not fully protected against 2 cm guns) would result in a weight of at least 30 tonnes. The head of the army recently spoke out against this type of tank. As a follow-up action, confirm that the development of a medium Panzer weighing about 30 tonnes with a 7.5 cm gun with increased capability can be dropped.”

It is notable that a 30 tonne tank was seen as a medium tank at the time, given that the newly built Panzer I weighed just 5 tonnes, while the first versions of the Panzer IV would go on to weigh 18 tonnes. Nonetheless, it is important to note that this tank, armed with a 7.5 cm gun, was intended as a counter to enemy heavy tanks, most notably the French Char 2C and the Char 2C bis, incorrectly called the 3C in the document.

The weight of 30 tonnes was chosen because, as was brought up during a 1936 meeting on the development of an engine for this tank:

“a higher weight would hardly be allowable when considering the Pionier bridging equipment”

The 30 tonne Panzer development project was not dropped by the Army and reappeared in the documentation in December 1935, with the problem of the engine:

“Dipl.Ing. Augustin turned the discussion to the development of a 600 hp engine for the heavy Panzers and noted that his opinion was that 600 horsepower will not be sufficient and that indeed it would be more correct to immediately develop a motor capable of 700 hp.”

This was just wishful thinking. At this point, Maybach was barely testing a 300 hp engine. The planned 600 hp 32 liter Maybach HL 320 V-12 petrol engine never got built. One year later, in October 1936, Wa Pruef 6, the German design office for armored vehicles, sent a request to Krupp for a conceptual design of a turret for this 30 tonne Panzer sporting the 7.5 cm L/24 gun.

Reproduction of the Durchbruchswagen experimental hull based on the description given by Dipl.Ing. Adders, the head of the design department of Henschel, following his interrogation by British Intelligence in 1945. Note that the five road wheels on each side are offset from each other indicating the use of torsion bar suspension. Source: Germany’s Tiger Tanks, D.W. to Tiger I

A Tank With Many Names

At this point, the 30 tonne Panzer was known as the Begleitwagen (verstaerkt), meaning ‘Escort Vehicle, Strengthened’. This indicates that the new 30 tonne Panzer was meant to cover the same role as the Panzer IV, which was also known as the Begleitwagen in its development. This would have meant that small units of 30 tonne Panzers would have been used to accompany lighter tanks during operations, being responsible for taking out enemy strongpoints which could be destroyed using their high explosive shells.

In March 1937, this designation was changed into Infanteriwagen, or ‘Infantry vehicle’. This also indicates a change in the role it was meant to carry out, presumably to having to work alongside friendly infantry to overcome enemy defenses, probably closer to the British and French concepts of an Infantry tank. This would not last long and, in April 1937, the vehicle would receive its most known designation, Durchbruchswagen, or ‘Breakthrough vehicle’. Again, this probably came with a role change, a role that would stick with the German heavy tanks up to the E100. This breakthrough role, which also appears in both Soviet and French armored doctrines before the war, proposed the use of heavy tank units to punch through the enemy defensive line, thus creating a breach which could then be exploited by other armored and motorized divisions.


The construction of the first Durchbruchswagen began with a January 1937 order from Wa Pruef 6 to the Henschel company for the design of a chassis for the 30 tonne Panzer. This would cement a practice that would hold on for most of the German heavy tank development of having two companies designing the vehicle, Krupp doing the turret and gun and another company doing the chassis. Two versions were built, the D.W.1 and the D.W.2, meant to be delivered in the second half of 1938, mostly with automotive differences.

Drawing of the Durchbruchswagen 1 by H.L.Doyle showing the vehicle with a test weight instead of a turret. Source: Tiger and its Variants

Durchbruchswagen I

The Durchbruchswagen I was protected by flat 5 cm thick armor on the front, sides and rear, which was meant to be proof against the armor-piercing shells of the German 3.7 cm PaK, although it is unclear at which range this was supposed to be at. The Armor Piercing (A.P.) shell of the 3.7 cm could penetrate more than 5 cm of armor at point blank range. To give a comparison, the Panzer IV Ausf.F, which had the same gun, same engine, a very similar turret and the same 5 cm frontal armor, weighed just over 7 tonnes less than the Durchbruchswagen’s intended weight. A significant part of this difference can be accounted for by the thinner side, rear, top and bottom armor, although other differences between the two tanks make this comparison just indicative.

The roof and bottom of the hull were 2 cm thick. The armor at the front was stepped. However, both of the constructed vehicles were made out of ‘soft’ (not armor) steel, as they were meant mostly for automotive tests. Also, due to the inability of existing milling machines to fabricate such long 5 cm armored plates, the side armor was made from two parts, with a split at the front of the engine compartment. At the joining, they were riveted to an internal frame. This increased the weight of the vehicle and affected the structural integrity of the side armor.

For that time, this was quite thick armor. Only the Char B1 bis had thicker armor (60 mm front and 55 mm sides), with the SOMUA S35 also having similar armor (47 mm front, 40 mm sides). Furthermore, just like on the Tiger I prototype, there was a foldable armor plate that could be lowered using hand cranks to protect the drive sprockets at the front. This foldable armor plate was allegedly put through a protection test which it failed. There were two escape hatches in the bottom of the tank, one on the right front, close to the radio operator, and one at the rear left of the hull, in the engine compartment. This could be accessed through a door in the firewall that separated the engine from the crew compartment. While not specifically mentioned in any source, the Durchbruchswagen I hull probably had a driver’s visor in the front of the upper glacis and a hatch in the roof. The radio operator on the right side of the front hull also probably had a hatch in the roof and a ball-mount machine gun.

The engine was a 12-liter water-cooled gasoline Maybach HL 120 TR giving out 280 hp, placed at the rear of the tank. The TRM version of this engine also propelled the Panzer III, Panzer IV and their derivatives. The engine was coupled to a Maybach-Motorenwerk Variorex semi-automatic transmission, also used on the Panzer III, placed at the front of the tank. These could allegedly propel the vehicle to a maximum speed of 35 km/h. The steering system consisted of three Cletrac stages in series. A Cletrac system allows the transfer of power from one track to the other when steering, without the usual loss of power due to braking. The three stages allowed the use of three different turning radiuses, so the tank could make a shallower or tighter turn without losing power. However, problems appeared with the steering system, with the cast iron housing being broken twice. The exhaust was at the rear of the tank, coming down from the upper part of the rear of the vehicle. There were also problems with the brakes, as the first version, done by Henschel, gave out a lot of smoke when breaking, so the coating had to be replaced.

One of the only two known images of the D.W. tanks, showing the final drives, first roadwheel and first shock absorber of the D.W.2. Source: Tiger and its Variants

The running gear consisted of a drive sprocket at the front, an idler at the rear, three return rollers and five medium-size double road wheels on each side. They had rubber rims in order to decrease the noise made by the tracks. Due to the use of a torsion bar suspension, the road wheels were not symmetrically placed. The ones on the right side of the tank were slightly forward compared to the ones on the left. The torsion bars were square and hollow on the inside. They were very soft-springed, meaning that they could give a smoother ride in certain conditions, but could not handle rough terrain and would lead to a lot of pitching during driving and when stopping or starting. Two shock absorbers were mounted on each side, one on the first roadwheel and one on the last roadwheel. These were meant to assist these torsion bars, as they were subjected to stronger shocks, especially when stopping or accelerating. Also, bump stops were added to the suspension in order to stop the road wheels from being deviated too much and thus protecting the tank from bellying out. The tracks had a pitch of 300 mm. The pitch of a track is the distance between the centers of two subsequent track links. In general, decreasing the pitch could lead to better speed and ride, but also means more track links were needed, with more connections and more parts. The tracks were lubricated and could be fitted with rubber pads. The rubber pads would have made the tank quieter and less prone to damaging or destroying the pavement on roads, while the lubrication decreased friction and thus increased the speed of the vehicle. These were both characteristics that seem to have been carried over from half-track designs.

The crew probably consisted of five people as on other German tanks being developed at that time. This would have included the driver and radio operator in the front part of the hull of the tank, and a gunner, a loader and a commander in the turret. This would have been a very important feature of this vehicle, as it would have allowed the commander to focus on his duties of observation and tactical leadership instead of having to aim and load the gun.

The dimensions of the Durchbruchswagen are not available in any of the sources, but it can be reasonably assumed that they would have been similar to those of the VK30.01(H). This later vehicle had a length of 5.7 and a height of 2.6 meters. The width of the VK30.01(H), of 3.1 meters, was probably larger than that of the D.W. due to the different suspension system. Nonetheless, these values are also very close to those of the Panzer IV.

Drawing of the Durchbruchswagen 2 by H.L.Doyle, showing a Panzer IV-like turret. The main outside differences compared to the D.W.1 drawing are the one-piece side armor, the crew escape hatch in the lower side and the different side viewport for the driver. It is unclear if these differences are historical or just speculative. Source: Tiger and its Variants

Durchbruchswagen 2

Work on the Durchbruchswagen 2 was started halfway through 1937 and it mostly had automotive improvements. In the book ‘Tiger and its variants’, Doyle’s drawing of the D.W.2 shows it with the one-piece side armor. However, in the book ‘Germany’s Tiger tanks’, Jentz specifically mentions that the one-piece side armor was introduced with the VK30.01(H) neue Konstruktion, and thus the D.W.2 should have the two piece side armor. Similarly, ‘Tiger and its variants’ shows the addition of a hull side-escape hatch to the D.W.2 while ‘Germany’s Tiger tanks’ makes no mention of such a thing.

Automotive-wise, the larger stages of the previous Cletrac system were replaced with a three-stage differential with magnetic clutches. Not only did these allow for power to be transferred from one track to the other while turning, but a triple stage differential also allowed to reverse one track with respect to the other, thus allowing the tank to neutral steer. The Cletrac stage with the smallest turning radius was kept though.

Also, the track pitch was decreased to 260 mm, which is claimed to have significantly improved the ride of the vehicle. The torsion bars were also changed to a more rigid type, with a three-times larger springing constant.

Due to these changes, the drive sprocket, final drives and parking brakes also needed to be modified.

The shorter pitch tracks of the Durchbruchswagen 2. This is one of only two known photos of the D.W. tanks. Source: Tiger and its Variants

The Turret

These two hulls were supposedly trialed to test all the components and identify what improvements could be made for future projects. However, almost no details remain about these tests. What is certain is that the Durchbruchswagen was not accepted as built.

Work on the Durchbruchswagen turret was done in parallel to that on the hulls. Krupp sent the requested conceptual drawings for the turret in February 1937, and was quickly informed by Wa Pruef 6 to use it as a basis for subsequent development. In the March 1937 answer, Wa Pruef details the desired characteristics of the D.W. turret.

The turret was to have a turret ring diameter of 1,500 mm, smaller than that of the Panzer IV. Also, the turret would be rotated manually, as

“No plans are made for an electric drive for traversing the turret. Auxiliary traversing gear for the loader is to be included.”

The armor of the turret would be 50 mm all around, with a 20 mm external mantlet and a 15 mm turret roof, affording similar protection as the hull. There is no other information on the shape of the turret of the Durchbruchswagen, although H.L.Doyle’s line-drawing in ‘Tiger and its variants’ shows a Panzer IV-like turret with a large commander cupola at the rear, a crew access hatch and a vision port on each side.

The gun to be used in this turret was the same 7.5 cm Kampfwagenkanone L/24 that would be mounted on the early versions of the Panzer IV. In a meeting in January 1939 on the topic of the heavy 30 tonne Panzers, it was expressly specified that no gun larger than the short 7.5 cm should be pursued because the increased weight would have to be compensated by a decrease in armor, which was deemed unacceptable.

The main shell for this gun was the Sprenggranate 34 high-explosive shell. This shell weighed around 4.5 kg and had an explosive filler of almost half a kilogram. This was meant to be used against enemy infantry, machine-gun posts, anti-tank guns, bunkers and soft-skinned vehicles. For anti-tank purposes, a series of High Explosive Anti Tank (H.E.A.T) shells were introduced during the lifetime of this gun, with penetrations ranging from around 45 mm to over 100 mm, although they were introduced into service later. Two types of Armor Piercing Capped Ballistic Capped (A.P.C.B.C.) shells were also available, with a penetration of 54 mm to 60 mm at 100 m distance. An APCBC shell works basically as a normal Armor Piercing (A.P.) shell, but has two additional caps added to the tip of the shell. The first cap is made of soft metal and is meant to absorb a part of the shock on impacting the armor and thus preventing the armor piercing tip from shattering. The ballistic cap was a hollow light cone added on the top of the shell with the sole purpose of improving the aerodynamics of the shell. This improved both accuracy and the penetrating power, as the shell kept more of its kinetic energy at longer ranges.

Another machine gun (most probably an MG 34) would have probably been mounted coaxially with the gun. The instruction letter from March 1937 specifies that the radio should be mounted in the turret, behind the gun. However, this seems impossible to do in a Panzer IV-like turret. If the turret was as the one drawn by Doyle, then the radio would have almost certainly been mounted in the hull.

Krupp finished the D.W. turret in May 1939, building it from soft steel. It was then shipped to Magdeburg, where it was put on display along with other developments, such as the Panzer IV turret. Nothing is known about what happened after this with the turret.

The End of the Line

The Durchbruchswagen project melts into the subsequent VK 30.01 (H), which inherited many of the characteristics of the D.W. designs. The Durchbruchswagen design also underwent its last designation evolution in November 1939, also receiving the designation Vollketten 30.01 (H) alte Konstruktion.

Nonetheless, a final D.W. hull was constructed from armor plate for ballistic tests. This hull had some changes compared to the previous two hulls, having slightly different armor values that were closer to those on the VK30.01(H). This was completed after September 1940 and shipped to Kummersdorf for firing tests. No information about the results are currently available.

The armor scheme of the single D.W. hull constructed from armor plate. However, these thicknesses were changed to be closer to those intended for the VK30.01(H). Source: Germany’s Tiger Tanks, D.W. to Tiger I

A Note on Sources

There is almost no photographic evidence for the Durchbruchswagen. The only known photographs of the project were published in ‘Tiger and its variants’ and consist of a photograph of the tracks and one of the final drives at the front of the vehicle, along with a roadwheel and a shock absorber. This paucity of photographic evidence is disturbing. Other visual references include a 1940 armor scheme of the ballistic test hull and a 1945 British reconstruction of the D.W. hull based on the interrogation of Dr. Aders, the head of the design department of Henschel. Finally, two beautiful line drawings from Hillary Louis Doyle are available in the book ‘Tiger and its variants’, but how many of the details on it are based on historical references and how many are conjectural is unknown.

It is also important to note that there is annoyingly little information available on the Durchbruchswagen, with only three books treating it in any detail. Even so, most of the technical details and specifications come from the 1945 interrogation of Dr. Aders by the British and not from contemporary German documents, so they should be treated with a degree of skepticism.

Dipl. Ing. Erwin Aders, one of the main designers involved in the Durchbruchswagen project. Source: Tiger and its Variants


Nowadays, the Durchbruchswagen are mostly forgotten except for some mentions in a couple of books and their appearance in a popular video game. However, they played an important role in the development of German heavy tanks that would culminate in the Tiger tanks. They were the main designs worked on at a time when the German heavy tank doctrine was being crystallized. Also, they were very important in testing the capabilities of the German armaments industry and helping identify where research and development were needed, such as designing better armor milling, better suspension and better engines.

Nevertheless, the Germans would not adopt a heavy tank for the Wehrmacht until 1942, meaning that the German tank divisions went into the Second World War without such a vehicle. During the peak of the German offensive successes, when such a tank would have been most useful in breaking down Polish, French, or Soviet defensive lines, none was available. The Germans nonetheless achieved great success despite the thin armor of their tanks due to excellent communications, training, leadership, and tactics.

Illustration of the Durchbruchswagen 2 based on H.L.Doyle’s drawing produced by Tank Encyclopedia’s own David Bocquelet. The hull side is in one piece


Dimensions Around 5.7 x 3.1 x 2.7 m
Armament 7.5 cm Kampfwagenkanone L/24
Machine Guns 2 x MG 34
Armor 50 mm hull front, rear and sides
20 mm hull roof and floor
50 mm turret front, rear and sides
15 mm turret roof
Weight Around 30 tonnes
Crew Probably 5 (driver, co-driver, commander, gunner, loader)
Propulsion Maybach HL 120 TR, 280 hp
Max Speed Allegedly 35 km/h
Total Operated 3 hulls and 1 turret built


Panzer Tracts No.6 Schwere Panzerkampfwagen D.W. to E100 including the Tigers, T.Jentz and H.L.Doyle
Germany’s Tiger Tanks, D.W. to Tiger I, Design, Production and Modifications, T.Jentz and H.L.Doyle
The Tiger tank and its Variants, W.Spielberger and H.L.Doyle

Leave a Reply

Your email address will not be published. Required fields are marked *