WW1 US Patent Designs

Lyon’s Electric Gyro-Cruiser

United States of America (1916)
Landship – None Built

“Suppose Great Britain’s giant navy could now come up out of the sea into the plains of northern France and, mounting itself upon wheels, dash in single line formation at express train speed upon one single, unsuspecting and strategic point of Germany’s hundreds of miles of battle front”

—Lyon, E., February 1916

February 1916 marked one year since the formal British programme to resolve the problem of getting men across no-man’s land under cover of armor had begun. There were ideas for a variety of machines, including wheeled ones, but it was the tracks, first from Crompton and then by Tritton, which would win over ideas of wheeled armor on the battlefields of WW1.

None of this work would have been known to the common man in the street in February 1916, but the official embodiments of trying to use technology, armor, and guns to close on and destroy the enemy were equally in the common consciousness as well. The majority of these ideas would focus on wheels and the use of wheels was also seriously limited by their fundamental design. A wheel, by design, has a tiny area in contact with the ground. This can be improved by making the wheel wider and/or adding more wheels, but even a vehicle with multiple wheels will struggle to cross obstacles such as trenches and ramparts, as the climbing ability is approximately limited to a function depending on the height of the wheel. If, however, the wheel could be made not only wider but also substantially larger, then a wheeled vehicle might, perhaps, have been a solution?

Certainly, this was a regular train of thought for numerous designers of the period. One such example can be found in the pages of the February 1916 edition of the Electrical Experimenter, a popular periodical of the era. Featuring a gloriously bright and optimistic front cover of a giant machine happily crushing and/or variously shooting at the enemy, this was an eye-catching machine, resembling a giant armored motorbike more than a weapon of war. The design and ideas of the design certainly had some engineering skill within them, but the entirety of the idea was completely and utterly wrong. The tanks which appeared to the world in September 1916 would shake ideas of armor warfare in the common mind to the core and ideas like this giant wheeled contraption would, in less than a year, be little more than a rather silly and naive footnote.

Eric R. Lyon A.B. wrote several articles for the magazine. This gyro-cruiser in February 1916, and ‘Minic Atoms and their experimental formation’ was published in June 1916. He also designed a one-man electrically-operated submarine in 1917, which was at least of sensible proportions. As far as is known, he never tried to patent the design.

Front cover of the February 1916 edition of the Electrical Experimenter. Note that the flag shown on the fire control mast appears to be that of the British Merchant Navy, the reason for which is unclear. Source: Electrical Experimenter magazine, February 1916.


The basic shape of the machine was that of a motorbike, albeit one more akin to a Penny Farthing-style bicycle with a huge front wheel and smaller trailing wheel behind. Mounted onto these wheels was a huge body, with the bulk of it at the front, formed in a manner similar to that of the rounded front hull of a warship. This enormous triangular section at the front was rounded and bulbous at the base with vertical sides which then stepped-out to become even wider and formed a stepped platform onto which a series of turrets were arranged. In the center of this section was a raised platform above the level of those turrets, with a giant ‘crown’ turret on top. On top of this was a rangefinder and the entire design was overlooked by a gigantic mast arrangement projecting vertically from the back to a height well above the crown turret.

All of the machinery involved in the vehicle was contained inside and within the area occupied by the giant front wheel. The vehicle was to measure 160 feet (48.77 m) high to the rangefinder and 180 feet (54.86 m) to the top of the mast at the back. At 230 feet (70.10 m) long, the vehicle was at least proportional in its dimensions in terms of height to length, but the width was ‘just’ 86 feet (26.21 m) from side to side, meaning a rather narrow, very high, and extremely long machine. As might be suspected by a machine of such gargantuan proportions, it was going to be eye-wateringly heavy too, at 20,000 US tons (18,143.70 tonnes).

The vehicle was to operate on a pair of wheels simply because the maximum road width on which it might operate would limit the size of the wheels used. Placing wheels side by side would inherently create a wider track-width for them on the road, meaning one or more would have to be off-road all the time. Making it so that the single-width wheels were the whole ground-contact presence of the vehicle would therefore mean that a substantially larger vehicle could be used on a standard road than which could otherwise be achieved.

Side elevation of Lyon’s giant Gyro-Cruiser.
Source: Electrical Experimenter Magazine, February 1916.

This also meant the wheels used could be anywhere on a road from 25 to 50 feet (7.72 to 15.24 m) wide and to ensure it would not go over the width of the road, limiting the wheel width to a far more modest 25 feet (7.72 m).

A total of 6 ‘small’ turrets surrounded the platform at the top of the hull, each fitted with a pair of large guns and surmounted by a massive turret known as the ‘crown’ turret on top of the raised section between them. This ‘crown’ turret would measure 40 feet (12.19 m) in diameter and, on top of this huge turret, was a domed cupola. This cupola or mini-turret could independently rotate and housed a wide stereoscopic-type range finder. In front of the crown turret and not shown in the drawings was to be a huge spotlight for the illumination of the enemy.

It is noteworthy that the design, as drawn and explained inside the magazine and the artwork on the cover of the magazine, were different. In the cover artwork, just 6 turrets are shown, with a single large turret at the front and the crown turret on top. A close look at the layout drawing, however, shows that there would be no space for this single central front turret, as it would be in the space occupied by the large front wheel.

Front Wheel

The front wheel is worthy of attention in its own right, not least due to its preposterous dimensions and construction. Measuring some 108 feet (32.92 m) in diameter, this was not a wheel in the conventional sense, like that of a bicycle or motorbike, rotating around a central axle. In fact, there was no axle at all. The wheel was toroidal in shape, with a heavily armored steel tyre weighing 500 US tons (453.59 tonnes) in its own right. At 25 feet (7.62 m) wide, the wheel was certainly going to help spread the load of the vehicle, but it alone was going to weigh around 10% of the total mass, at 2,000 US tons (1,814,37 tonnes). This meant that, aside from the armor, another 1,500 US tons (1,360.78 tonnes) of material made up the structure of it.

This was because the wheel was not simply a wheel, but was also the stabilization mechanism for the vehicle and formed a colossal gyroscope. The wheel itself was to be hollow and allowed for the addition of giant hollow iron balls some 15 feet (4.57 m) in diameter which were faced with non-magnetic steel. Twelve such balls, each weighing 40 US tons (36.29 tonnes), would float freely within the liquid inside the wheel, held off from contact with the sides by magnetic forces and their own buoyancy of around 10 US tons (9.07 tonnes) per ball.

Cross-section of the giant gyroscopic wheel with its beveled and heavily armored outer face removed, showing the inner and outer liner of alternating magnetic coils and iron bands. The balls inside were hollow iron balls 15 feet (4.57 m) in diameter faced with nonmagnetic steel and which sat floating within the fluid filling of this toroidal wheel. Each ball was estimated to weigh some 40 US tons (36.29 tonnes) and produce 10 tons (9.07 tonnes) of buoyancy within the fluid.

With an outer diameter of 108’ (32.92 m) and an inner diameter of 50 feet (15.24 m), the volume of the torus is calculated using the formula V=(πr2)(2πR) to equal 5,353 m3. Deducting the volume of the dozen iron spheres (49.97 m3 each / 599.69 m3 total) leaves 4,753.31 m3 of space inside and this void was to be filled with fluid. The fluid initially selected was water. This volume of water would have weighed 4,753 tonnes. With 12 balls at 40 US tons (36.29 tonnes) and the armored tyre at 500 US tons (453.59 tonnes), this would have meant a total mass of 5,642 tonnes, nearly 3 times what was being proposed by Lyons in his guestimate of 2,000 US tons (1,814.37 tonnes). That gets worse when he suggests an alternative fluid filling for the wheel which…

“will be water, although hot, liquid-fusing metals may be later employed, or mercury…”

—Lyons, E., (February 1916)

Mercury, on top of being extremely toxic, is a liquid metal at room temperature and also 13.5 times denser (13.5 grams per milliliter) than water (1 gram per milliliter). That would mean a space of 4,753.31 m3 filled with mercury, would, aside from being a rolling ecological disaster waiting to happen, weigh 64,169 tonnes, more than 3 times the estimated complete weight for the vehicle!

The wheel, as already stated, was not to run on an axle. The space inside the wheel would be occupied by the powerplant. Instead, the wheel would be ‘attached’ to the body by a series of ball bearings running in a radial groove on the wheel so that it could rotate with the minimum of friction.

Power Plant

Little is mentioned of the power plant for the design, although a drawing in cross section was provided in the article. Located within the hull and surrounded by the wheel rotating around it, the form of power was primarily a large diesel engine producing 60,000 hp. Attached to this was a large electrical generator which could provide 40,000 hp, as well to drive the wheel via 2-speed multi-polar motors, each of which was 70 feet (71.34 m) in diameter. Drive of the wheel was provided electrically, as the torroid of the wheel was ringed in, banded by sections of magnets and non-magnetic metal, whereby the ring of the wheel was moved by the motors. This presumably would also function as the braking system for the wheel, although this was not mentioned by Lyons.

Rear Wheel

At the rear of this machine was the ‘small’ wheel, measuring just 60 feet (18.29 m) in diameter. This wheel not only assisted in balancing the machine, but also provided the steering for the machine. It was fixed to the rear part of the body, operating on a normal fixed type axle and relied upon this rear part of the vehicle to be able to move independently of the front part. Like the front wheel, this wheel was also to be clad in heavy steel armor plating and was to be bevel shaped.

Due to the weight and size of the wheel, steering of this tail section and wheel would have to be done in some means, such as hydraulic pumps or electric motors.

In cross-section, the scale of Lyon’s folly is obvious with a huge, heavy, and overly narrow vehicle overly laded with heavy firepower. Towing over its surroundings, like this 50 foot (15.24 m) tree or comparatively ant-sized soldier (next to the base of the wheel), the vehicle was a giant target for even the most skillless of an enemy.
Source: Electrical Experimenter, February 1916.


As usual with some of these giant vehicle ideas, the designer got a little carried away with overly optimistic performance figures and Lyon here is no exception. Lyon estimated a top speed of 60 mph (96.56 km/h) which, for a vehicle weighing several thousand tons, would be as remarkable as it is improbable on land.

Lyon calculated that rotating the giant wheel just 15 or 16 times a minute was sufficient and this is borne out by checking his math. With a diameter of 32.92 m, the radius would be 16.45 m. The circumference (2πr) of the giant wheel would therefore be 103.4 m. At 15 revolutions per minute, this means 15 x 103.4 m = 1,551 m, 1.55 km per minute, or 15 x 60 x 103.4 m per hour = 93,060 meters per hour; or 93.1 km/h, which is roughly 57.8 mph.

The motors would have had 2 speed settings, with the low speed setting for operating on steep slopes uphill or downhill and the high speed for flat hard ground.


A big vehicle is a tempting repository for the designer to install as much armament as possible and, indeed, Lyon did just that. This vehicle would truly be the giant battleship mounting a full set of no less than twelve 17-inch (431.8 mm) guns, this ludicrous armament was arranged in pairs across the six small turrets.

Each of the side turrets was clearly drawn in the cross-section, showing a pair of these guns. The ‘crown’ turret on top of the hull, however, was not armed with these huge guns. Instead, it was to use a single machine gun, not firing bullets, but something much larger. This ‘machine gun’ was effectively an enlarged version of the classical style of ‘Gatling’ gun with multiple barrels rotating and firing in turn, except that, instead of rifle-caliber barrels rotating, this weapon was to use 6-inch (152.4 mm) caliber rifles. Fired electrically, a single man would be able to operate the gun although how it, or the 17-inch (431.8 mm) were to be fed with ammunition was not addressed.

Aiming for the guns was to be addressed by means of the fire controller, working from the top of the mast in coordination with the commander in the ‘crown’ turret and the use of the rangefinder. This rangefinder was 160 feet (48.77 m) above the ground, more than high enough to see over trees and obstacles. The reason for this height is not speculated upon, but probably, coincidentally, it was almost precisely the same height as the top of the nave on a cathedral, like Beauvais in France, at 47.5 m. If nothing else, this comparison provides an indication of the ridiculous proportions for this vehicle.

Around the lower part of the hull were what appears to be some weapons as well. These are not described at all in the document. Despite this, two projections which appear to be guns project directly from the front, one about half way up the hull and the other just at the top of the rounded part of the lower hull. Three more circular features are also apparent in this lower section, around from the front to the sides of the vehicle. They may also be weapons ports but, once more, cannot be confirmed.

In the rounded lower part of the hull are what appear to be weapon ports. Source: Electrical Experimenter Magazine, February 1916.


No armor other than ‘thick’ or ‘heavy’ is mentioned, but given that the big front wheel itself was to have 500 US tons of protection (probably for the best if it was filled with mercury), then heavy armor would be needed elsewhere. This enormous machine would be a target even the semi-literate half conscious enemy gunner might hit with zero effort, so if it was not to be destroyed very easily, then it would have needed substantial armor plating. Given all of the naval sized ammunition it would have to carry, it would also have to have a magazine of some sort. On a warship, if it was compromised, it could flood the magazine with sea water to prevent explosion. No such possibility would exist for this vehicle, so the designer would either have to accept the possibility of several thousand tons of mercury being blasted all over northern
France when his vehicle’s armor got breached, or else have provided substantially thicker armor than would otherwise be acceptable – several inches at least.


Other than a command staff of some sort operating a bridge inside the crown turret, there appears to have been little if any consideration of a crew. Whatever that crew may have been would not have been small. With 12 main guns, multiple smaller guns, a command team, probably some mechanics, drivers, spotters, ammunition handlers, etcetera to add into the count, at least a hundred men are likely to have been needed.


It is hard to take the design seriously or even semi-seriously. Even Lyon must have accepted, like others, that such gargantuan vehicles might make attractive and eye-catching cover art, but not practical vehicles.

For the cost in material of a warship or three, hundreds of men needed for the vehicle, and the vast problems which would come with even just trying to move the vehicle to where it might be used without crushing everything on its way into oblivion, the investment would simply be redundant. The vehicle was a huge target and the guns were positioned far too high up to be usefully depressed to actually fight the enemy it was rolling over/past. The stabilization might have been viable for a machine in theoretical terms using a gyroscope. In fact, in this regard, the design was rather clever, but the scale is devoid of and detached from reality. It is not even clear if the vehicle would be able to remain in any state other than one of perpetual motion or risk toppling over. In light of the total impracticality of the concept, it seems likely this idea was just a desperate attempt to try and envisage a means by which technology, armor, guns, and mechanical traction could somehow break the deadlock of trench warfare.

The correct answer would be unveiled several months later and this idea, like so many others, were quite rightly consigned to the dustbin of bad ideas.

Lyon’s electric Gyro-Cruiser by Pavel Alexe. Illustration funded through our Patreon campaign.

Specifications: Lyon’s Electric Gyro-Cruiser

Armament 12 x 17-inch (432 mm) guns, 1 x rotating 6-inch (152 mm) gun
Length 230 feet (70.10 m)
Height 160 feet (48.77 m) to the range finder. 180 feet (54.86 m) to top of fire control mast body
Width of wheel 25 feet (7.62 m)
Total width 86 feet (26.21 m)


Lyon, E. (1916). The Electric Gyro-Cruiser. Electrical Experimenter Magazine, February 1916.
Secor, H. (1917). A one-man electric submarine. Electrical Experimenter Magazine, May 1917.

14 replies on “Lyon’s Electric Gyro-Cruiser”

yes it is real but I believe that only a wooden mockup was made before it was cancelled if you want more information look at Panzer tracts 20-1 by Jentz and Doyle

Don’t mislead Unnamed Tanker. The Rutscher wasn’t part of that project. What about “E-5” is a fantasy design. The E-series only ever included the E-10, E-25, E-50, E-75 and E-100

Does are 2 different designs.
The E-5 is a myth and a post war inventing by (I suspect) Hahn in Waffen und Geheimwaffen des Deutschen Heeres 1933-1945
Hahn, Fritz.
The Rutcher was a real design, 2 wooden mock-ups where made as part of the Panzerkleinzerstorer project. But the dimensions and weight giving are quoted wrong on many sites. All real info known can be find in Panzer Tracts 20-1

Lyon’s Electric Gyro-Cruiser is probably a failed prototype landship because if it would have been built, it would have devastated concrete bunkers, enemy trenches, barbed wire, enemy guns, and tanks but it would really strike fear into the hearts of the enemy so everyone read my comment and tell me what do think, is it worthy to plow through enemy lines? or will take on the country germany

This thing would never make it to the battlefield. It would crush the bedrock never mind the road it tried to travel. However I would love to see an engineer look at that front wheel to see if that could work on any scale small or not quite so large, it seems so crazy as to be worth a real look.

I have a newspaper insert from 1917 that features the gyro cruiser. I looking for someone who might be interested in it. It’s in great condition

What… In God’s name… Is this? Is that… A crows nest? What…? I- I don’t…. …What the heck…?

12 17″ GUNS????? Of all the landship designs i have seen, I have never stumbled upon something as AUDACIOUS as 12 17″ GUNS!!! ON A 2 WHEEL, MULTI TON FRAME????

Leave a Reply

Your email address will not be published. Required fields are marked *