Russian Federation (2001-Present) Heavily Armored Flamethrower Personnel Carrier – 10-15 In Service Introduction A Heavy APC for a Special Role As the 1990s drew to a close, the newly formed Russian Federation was struggling with renewing its aging military while trying to recover from the economic crisis brought upon the nation by the fall of…
Soviet Union/Russian Federation (1961-Present) Medium Tank – 19,019 Built The T-62 medium tank, known under the factory index of Object 166, formally entered service in the Soviet Army on 12 August 1961. The tank was designed and built at Factory No. 183 in Nizhniy Tagil, known as Uralvagonzavod. It was accepted into service as a…
Russian Federation (1996-1999) Infantry Fighting Vehicle – At Least 2 Prototypes Built The Soviet BMP-1 infantry fighting vehicle is a historically very significant vehicle, responsible for popularizing the IFV concept on a massive scale worldwide. The vehicle itself remains to this day the most produced infantry fighting vehicle in history, with about 40,000 produced in…
Russian Federation (1997) Infantry Fighting Vehicle – 1 Prototype Built The Soviet BMP-1 infantry fighting vehicle is a historically very significant vehicle, responsible for popularizing the IFV concept on a massive scale worldwide. The vehicle itself remains to this day the most produced infantry fighting vehicle in history, with about 40,000 produced in total in…
Russian Federation (2018-Present) Infantry Fighting Vehicle – 37 Ordered The Red Army’s Surplus The Russian Federation is the largest and most powerful out of all the successor states of the Soviet Union. Because of this status, it inherited most of the very large fleet of armored vehicles which the Soviet Army had during the Cold…
Russian Federation (1997) Heavy Armored Personnel Carrier – Unknown Number Built In December 1994, Russian forces assaulted the Chechen capital of Grozny in what would later be known as the First Chechen War. After suffering enormous casualties, the Russians finally managed to capture the city, only to be forced out of it again by a…
Russian Federation (2002) Heavy Infantry Fighting Vehicle – 15-20 Built BMPT Terminator being showcased at an expo. Philosophy of a Russian heavy IFV The BMPT Terminator (the name “Terminator” is not an official designation, but used by the designers for publicity reasons) is a support combat vehicle which is mainly meant to be used in urban…
Russian Federation (2001-Present)
Heavily Armored Flamethrower Personnel Carrier – 10-15 In Service
Introduction
A Heavy APC for a Special Role
As the 1990s drew to a close, the newly formed Russian Federation was struggling with renewing its aging military while trying to recover from the economic crisis brought upon the nation by the fall of the Soviet Union and the economic ‘shock therapy’ earlier in the decade.
These conditions created a special need to produce a new vehicle that would fulfill specialized combat roles at the lowest cost possible. The need for a heavily armored personnel carrier for the transport and support of specialized ‘flamethrower’ troops on the battlefield was one such task.
However, designing a completely new vehicle from the ground up for such a niche role might have proven too expensive for the newly-born and cash-strapped Federation. As such, a solution was found in redesigning an already existing vehicle to fit this special role. A main battle tank, for instance, could be repurposed to become an armored personnel carrier fit for transporting troops while offering a decent amount of protection, and what better tank to choose for this endeavor than the iconic T-72?
The New Backbone
Designed in the late 1960s and early 1970s as a relatively more cost-effective alternative to the existing expensive and complex T-64A, the T-72 Ural entered production in 1973 in Nizhny Tagil to form the new backbone of the Soviet tank force.
The tank incorporated many of the innovative design aspects of the previous T-64, with a slight decrease in technical proficiency for the sake of better cost-effectiveness. These aspects mainly included the autoloader, a 125 mm smoothbore gun, and composite armor. Later variants, such as the T-72A and T-72B, and upgrades improved upon this by increasing the protection, mobility, and lethality of the tank.
True to its purpose, the T-72 became one of the most widely produced MBTs (Main Battle Tanks) of the Soviet arsenal, second only to the T-55. Around 18,000 tanks were built for both Soviet and worldwide militaries. The upgraded T-72B3 variant continues to form the backbone of the modern Russian tank force.
As a result of its design, this cost-efficient workhorse saw combat use all over the world from the late Cold War era to the modern wars of the 21st century, outliving the USSR itself and embedding itself in the history of armored vehicles as one the most prolific and effective MBTs.
However, as for the scope of this article, the focus will be on the 1980s T-72B variant of the MBT, since it was the variant that formed the basis for the BMO-T design.
Converting an MBT into an APC
The concept of an Armored Personnel Carrier (APC) shares some similarities with a Main Battle Tank (MBT), namely the fact that both need to be sufficiently armored to protect against possible threats. Despite serving different roles on the battlefield, an APC and an MBT can require similar protection if faced by similar threats.
Such threats could include shoulder-launched or guided anti-tank weapons, which have proven more than capable of knocking out even the most armored of vehicles. Typically, such weapons would employ a chemical energy warhead that can achieve high levels of penetration with a relatively small weight. This makes them easy to be carried and used by small teams of infantry, enabling them to cause significant armor losses if employed correctly.
With this premise in mind, and since Main Battle Tanks often feature decent protection compared to other vehicles, it is possible to convert a Main Battle Tank into an Armored Personnel Carrier, thus capitalizing on stronger protection while saving the costs of a new design.
Another reason for this conversion was to put older tanks into use. Some of these had become obsolete in the modern battlefield but might still be usable as Armored Personnel Carriers given their decent protection and functionality. In the case of Russia in the early 1990s, the Army’s arsenal was stocked with hundreds of said tanks, especially T-72s of various models and variants.
The usual method for the aforementioned conversion was to remove the tank’s turret and replace it with a large space in the chassis which would contain the infantry dismounts and their gear, complete with additional rear or top hatches for them to mount/dismount from the vehicle. A smaller turret can be installed to house a light defensive weapon, such as a heavy machine gun (HMG) or an autocannon. In addition to the armor, further defensive options may be added, such as an automatic grenade launcher or firing ports for infantry dismounts’ small arms. The front of the vehicle can also be “up-armored” to include protection from chemical energy rounds in the form of Explosive Reactive Armor (ERA) blocks.
Thus, an aging tank design may get its service life prolonged by serving a different role on a modern battlefield, that of an Armored Personnel Carrier.
Such a method has seen many uses in modern militaries. For the Russians themselves, the BMO-T was not the first Russian vehicle to be based on a Soviet-era MBT. That honor goes to the BTR-T.
Failed Predecessor
Similar to the T-72 Main Battle Tank, the T-54/55 used to form the backbone of the Soviet armored fist from the 1950s until the 1970s. Like the T-72, the T-55 became more obsolete as a tank with each decade, and by the conclusion of the 1st Chechen War in the 1990s, thousands of these once-potent vehicles filled Russian stockpiles.
The BTR-T (Armored Personnel Carrier – Heavy) was an attempt to make use of the massive stockpiles of T-54/55s. By removing the turret, reinforcing chassis protection, and increasing its height, the tank could be turned into a cheap yet decently protected armored personnel carrier capable of transporting 5 infantry dismounts. It seems that this project took a universal approach when it comes to battlefield uses, as opposed to the BMO-T, which was more focused on transporting flamethrower troops. The BTR-T had a higher variety in the armament, such as a 2A42 autocannon and a Konkurs ATGM.
Unfortunately, due to many design flaws, such as low dismount capacity, cramped interior, and weak protection, the BTR-T was not approved for serial production. Some unverified reports suggest it might have been more successful on the export front.
The BTR-T, however, remains an important predecessor in the line of MBT to APC-conversions.
Design
Barring the removal of the turret and gun, the design of the BMO-T (Flamethrower Combat Vehicle – Heavy) Object (564) did not differ much from the main battle tank it was based on, aside from slight alterations to the chassis.
Chassis
BMO-T chassis specifications
Length (mm)
7,220
Width (mm)
3,787
Height (mm)
2,240
Weight (t)
43.9
Crew
2
Capacity (transported infantrymen)
7
The BMO-T design barely differed from the original T-72B chassis. However, internal components, such as fuel tanks, were shifted to the upper section of the vehicle sides, between the crew compartment and the side armor. This was done to accommodate the 7 infantry dismounts and their weapons.
Starting at the front of the vehicle, the usual assortment can be found, such as a frontal dozer blade, two headlights, towing hooks, towing cable, Explosive Reactive Armor plates, a sliding driver’s hatch with a single periscope right beneath it and a total of 12 smoke grenade launchers (6 on each track fender).
In the original design, the position of the smoke grenade launchers seems to have been on the rear side of the vehicle, as opposed to the production version of the BMO-T, which features the smoke launchers in the front.
The BMO-T is based on the T-72 chassis, which was enlarged to create room for the transported dismounts. At 2.24 m, the vehicle has a higher profile than that of the T-72 chassis.
Offset from the center axis sits a commander’s cupola similar to that of the T-72. It is a spring-loaded, fully rotating cupola offering a 288º vision arc through its set of 5 vision devices: the TKN-3MK day-night binocular periscope with passive and active night vision capabilities mounted on the front of the commander’s cupola, two TNPA-65A periscopes, and two TNPO-160 periscopes. Furthermore, the entire cupola could be rotated independently, allowing the NSVT gun mount for the commander to have a potential 360º field of fire without having to traverse both the cupola and the gun. Additionally, the cupola would provide slight protection to the back of the commander when operating the heavy machine gun.
Two more hatches are included to provide firing positions for the passengers, through which they are able to engage targets with their RPO-A rockets while being partially protected by the vehicle’s armor. To this extent, additional vision devices were embedded on each side of the roof (5 in total) to provide the passengers with some level of situational awareness.
Climbing down from the roof and towards the rear of the vehicle, one can find armored hatches on the rear section of the roof. These can be swung upwards for ease of mount/dismount of infantry passengers. Each of these hatches includes a vision device for situational awareness.
Finally, towards the rear of the vehicle, some extra stowage was added in the form of multiple stowage bins mounted on each side of the chassis. These additional bins provided partial cover to the infantry dismounts, who, due to the BMO-T retaining the same engine compartment of the T-72, had to climb down from the engine deck while dismounting from the vehicle. A spring-loaded pedestal was incorporated at the very back to make climbing up and down from the rear of the vehicle an easier task.
Protection
The BMO-T is protected by several components added to bring the old T-72B chassis up to the protection standards of the 1990s and early 2000s.
The front of the vehicle features increased protection in the form of Kontakt-5 Explosive Reactive Armor blocks bolted onto the chassis, including on the driver’s hatch.
Explosive Reactive Armor (ERA) was developed during the 1970s to counter the growing threat posed by chemical penetrators, in the form of shaped-charge warheads to tanks and armored vehicles. It works by detonating a localized explosion at the warhead’s impact area, which pushes out a burster plate which in turn either degrades the penetrative capability of the warhead or negates it completely.
For the Soviet Union, Kontakt-5 represents an improvement over the aging Kontakt-1 blocks used on older T-72B variants. They are even claimed to be effective against kinetic force penetrators, such as Armor-Piercing Fin-Stabilized Discarding Sabot (APFSDS) rounds.
Adding said ERA blocks to the front of the BMO-T improved its survivability against more modern anti-tank threats.
As for the sides of the vehicle, various layers of armor were added (spaced armor, rubber-lined blocks, an inner anti-spalling rubber-lining, and fuel tanks). This is said to bring the side armor to a similar level of protection as the front of the BMO-T.
Mobility
Generally speaking, the mobility of the BMO-T remains largely unchanged from the modernized versions of the T-72.
Powerplant (Engine)
The BMO-T is reportedly powered by the V-84M four-stroke, V-shaped, 12-cylinder multi-fuel liquid-cooled diesel engine. This is the same engine as on the modernized T-72B main battle tank it was based on. Below are the engine’s general specifications:
V-84M engine specifications
Engine type: four-stroke, V-shaped, 12-cylinder multi-fuel liquid-cooled diesel engine with combined supercharging from a drive centrifugal supercharger (CSP)
Engine power without resistance at the inlet and outlet, kW (hp)
618 (840)
Rotation frequency, s -1 (rpm)
33.3 (2000)
Torque margin, (%)
18
Specific fuel consumption, g/kW*h (g/hp*h)
247 (182)
Mass (kg)
1,020
Specific power, kW/kg (hp/kg)
0.6 (0.82)
Transmission
In addition to the V-84M engine, the BMO-T features the same transmission system as the modernized T-72Bs.
The system consists of a dual planetary transmission gearbox, a drive shaft, and an intermediate power transfer gearbox that connects to the engine.
The transmission features a range of 8 gears (7 forward gears and 1 reverse gear) and, along with the V-84 engine, permits the BMO-T to reach speeds up to 60 km/h on paved roads and up to 40 km/h on rough terrain. However, the reuse of the T-72 transmission means that the BMO-T suffers from the same poor reverse speed that the T-72 is infamous for.
Finally, the BMO-T features an individual torsion bar suspension with shock absorbers inherited from the original T-72 design.
Transmission specifications
Max road speed (km/h)
60
Max cross-country speed (km/h)
30-40
Operational on-road range (km)
710
Operational cross-country range (km)
427 – 657
Max Climbing angle (º)
30
Max obstacle height (m)
0.85
Max crossable ditch depth (m)
2.8
Max fording depth (m)
1.2
Armament
The BMO-T’s armament is relatively light compared to its predecessor, the BTR-T. This can be explained by the difference in purpose between the two vehicles. The BMO-T was designed for transportation and support of a specific class of troops (flamethrower infantry), and thus, the armament required is expectedly light.
1- NSVT
During the late 1960s and early 1970s, the Soviet command sought to replace the obsolete DShKM heavy machine gun with a lighter, more reliable, and more simplified HMG.
The result of the said effort was the NSV 12.7mm “Utyos” or Cliff (GRAU: 6P17), which was developed by the Tula manufacturing plant using new technologies, such as electrochemical treatment.
NSV is named after the initial letters of the three designers’ last names (Nikitin, Sokolov, and Volkov). The HMG was first deployed during the Soviet invasion of Afghanistan in the late 1970s, where it proved to be fairly reliable and effective against both infantry and lightly armored vehicles due to its ability to fire both armor-piercing and fragmentation rounds.
The NSVT is the variant of the Utyos intended for use on armored vehicles, mainly to combat low-flying aircraft and soft-skinned ground targets. The main difference between this variant and the original NSV was the implementation of an electric trigger mechanism.
Soviet main battle tanks, armored personnel carriers. and self-propelled artillery had the NSVT fitted. Since the BMO-T was based on the T-72B, it was only natural for it to be equipped with the NSVT found on the T-72B’s commander’s cupola.
In the BMO-T, the commander can operate the NSVT after opening the cupola’s hatch and standing on the edge of his seat to reach the controls of the machine gun. It is mounted on a ZU-72 mount, which offers a range of elevation from -5º to +75º. The HMG is equipped with the K10-T reflector sight to facilitate engaging low-flying aircraft. It is possible to rotate the gun independently from the commander’s cupola, though the traverse mechanism is manual, so traversing the gun can prove to be a challenge when the vehicle is on a slope.
Initially, the BMO-T was intended to feature remote controls for operating the NSVT from inside the vehicle. However, this was abandoned for the production vehicle, possibly due to budgetary constraints.
NSVT specifications
Cartridge (mm)
12.7×108
Mass (kg)
25
Length (mm)
1560
RIfling
8 grooves
Muzzle velocity (m/s)
845
Rate of fire (round/min)
700 — 800
Maximum engagement range – ground (m)
2,000
Maximum engagement range – air (m)
1,500
Armor penetration at 500 meters (mm)
16
Ammunition box capacity
150 rounds
2- RPO-A
Since the BMO-T was designed specifically to transport and support assault infantry armed with RPOs, a look at this unique weapon is necessary.
The RPO (Rocket-propelled Infantry Flamethrower) is a man-portable, single-use, rocket-propelled flamethrower which employs thermobaric explosions or aerosol explosions to neutralize enemy structures and entrenched infantry. Developed in the 1970s to replace the LPO-50 conventional flamethrower, the RPO was a much lighter, much safer and much more effective means for delivering flames to enemy positions than conventional flamethrowers.
A thermobaric weapon works by utilizing the devastating effect of fuel combustion and air pressure. Upon hitting the target, the weapon disperses a cloud of flammable aerosol, which quickly spreads over a vast area. Then, a second charge ignites the aerosol, creating a large cloud of flames and quickly burning anything within the blast radius. This rapid local combustion forces the surrounding air to rush to the blast zone, creating a devastating wave of pressure which can demolish entire structures in its wake.
The first RPO to be developed in Tula was the RPO “Rys” (Lynx) in 1976, which was deployed in Afghanistan by Soviet flamethrower infantry, though its performance was deemed insufficient. As a result, development of the RPO-A “Shmel” (Bumblebee) began in the late 1970s, which culminated in being commissioned for Soviet troops in 1988.
The “Shmel” was lighter, more compact, and more effective than its predecessor, which gave it a better reputation with the troops, especially during the Chechen wars of 1995 and 2001. The RPO-A is the variant seen in use by Russian flamethrower troops transported by the BMO-T.
In the BMO-T, RPO-A rockets are stowed horizontally in 3 protective racks, each containing 10 rockets, making the total capacity of carried rockets to be 30 tubes.
Due to the rocket’s backblast and the lack of firing ports, it is not possible to fire the RPO from inside the BMO-T. Instead, the flamethrower troops have to either fully expose themselves by dismounting or partially expose themselves by popping out of the upper hatches to engage targets with their RPO rockets.
RPO-A characteristics
Caliber (mm)
93
Mass – launcher + rocket (kg)
11
Mass – rocket (kg)
4
Length – launcher (mm)
920
Length – rocket (mm)
700
Blast radius – enclosed (m)
80
Blast radius – open space (m)
50
Maximum engagement range (m)
1,000
Effective range (m)
400
Service
Why did the BMO-T Succeed, when the BTR-T Failed?
Given that the two vehicles were developed roughly at the same time, it is important to explore why one managed to find some local success while the other did not.
The ultimate reasons for this success may be unknowable, however, some speculation is possible by exploring the key differences between the BMO-T and BTR-T.
Newer Chassis
Being based on an older, more obsolete MBT like the T-55 might have been a sufficient reason for BTR-T to fail both domestically and on the export market, even with the added protection. The T-55’s chassis would still be less protected than a T-72B chassis used for a BMO-T.
The engine also must have played a role in the failure of the BTR-T, since it retained the older T-55 engine, which offered an overall worse performance than the V-84M engine used on the T-72B.
Higher Transport Capacity
The capability of transporting up to 7 dismounts plus a crew of two certainly gave the BMO-T an advantage over the BTR-T, with its transport capacity of 5 dismounts.
More Specialized
It could be cheaper to put to service a specialized vehicle in limited numbers than it is to acquire a more general-purpose vehicle in larger numbers.
Perhaps the more specialized role of the BMO-T (transportation and support of flamethrower troops) was a deciding factor in its small-scale adoption by the military, as opposed to the BTR-T, with its more universal role as an armored personnel carrier.
Design flaws
The BMO-T, despite having an advantage in many areas, was not without its flaws, some of which it shared with the BTR-T, and some were relatively unique to it.
Vulnerable Dismounts
The BMO-T retained the same position of the engine compartment as the T-72B, which means that, for the infantry passengers to mount or dismount from the vehicle, they would have to climb on top of the engine block and through a set of armored hatches on the rear side of the passengers’ compartment. Aside from this being an uncomfortable method requiring the infantry to climb on and off the engine compartment every time they mount or dismount from the vehicle, it also exposes the infantry dismounts to enemy fire while walking on top of the engine, and while some protection is provided through the additional steel storage boxes rising on each side of the engine compartment, this is far from adequate protection for the mounting/dismounting passengers, especially with the vehicle’s role being that of a heavily armored personnel carrier to bringing assault infantry as close to enemy lines as possible.
For this problem to be dealt with, the engine block would have had to be relocated to connect the infantry compartment with the rear of the vehicle. This would allow for the installation of a much better-protected entry/ exit method, such as the one found on the IDF Achzarit, which was an APC converted from captured T-55/54s.
Light Armament
While the NSV-T is an effective heavy machine gun, it cannot deal with thicker-skinned targets, such as heavy APCs, IFVs (Infantry Fighting Vehicles), or tanks.
Thus, one could argue that the BMO-T could have benefitted from heavier firepower, such as the KPV-T 14 mm heavy machine gun, the 2A42/ 2A72 30 mm autocannons, coaxial automatic grenade launchers, or Konkurs Anti-Tank Guided Missiles. Such heavier armaments would better allow it to fulfill its role of bringing assault infantry as close as possible to enemy positions while providing support and protection against heavier threats.
It is important to note that the BTR-T has been equipped or marketed to be equippable with such heavy weapons.
Another issue is the commander’s lack of remote control for his HMG, forcing him to leave his protected station by opening his hatch and standing up half-exposed to operate the NSV-T. While it was reported that the BMO-T was designed with a remotely operated HMG station, this feature is missing from the production vehicle.
Deployment and Service Record
There are a reported 10-15 BMO-T vehicles in active service. Up until recently, the vehicle has not seen any active conflict according to publicly-available information. However, this has changed during the recent and ongoing 2022 Russian invasion of Ukraine.
Three BMO-T vehicles were identified as destroyed with video and photo evidence corroborating this information. The first BMO-T was reportedly destroyed on 12th April 2022 in the Chirniv area, the second was reportedly destroyed on 7th August 2022 in an unknown area in Ukraine, and the third was reportedly destroyed on 14th September 2022 in the Kharkiv area. While there is little information about the cause of destruction in each case, it is unclear how this information could be interpreted in terms of the effectiveness of the vehicle’s protection and performance since a more thorough, post-war evaluation is necessary to make such inferences.
Furthermore, a picture of a captured BMO-T being put in Ukrainian service surfaced on the internet on 18th June 2023. It is unclear whether the vehicle in the picture is a restored BMO-T from the ones that were destroyed in 2022 or a newly captured BMO-T during the ongoing Ukrainian counteroffensive since the beginning of June. On 21st July 2023, a video of BMO-T being put into Ukrainian service by towing a tank was uploaded to the internet. It is unclear whether it is the same BMO-T that was captured in June of the same year or a newly captured one.
Conclusion
The heavy armored flamethrower personnel carrier (BMO-T) was a cheap solution to field a specialized transport vehicle that is decently protected and easy to manufacture. As the Russian military is bogged down in Ukraine and its military-industrial capacity is reaching its limits, it is difficult to ascertain whether this vehicle is doomed to be a rare, discontinued product of the 2000s or whether it will see more production and development in the coming years.
http://www.btvt.narod.ru/4/bmot/bmot.htm “BMO-T heavy armored personnel carrier”, Btvt Narod, based on the patent of the Russian Federation 2172921, date unknown.
http://btvt.info/5library/hapc.htm Christopher F. Foss, “Heavy duty: upgraded MBTs take on challenging urban operations”, Jane’s International Defense Review, July 2009, vol. 42.
Soviet Union/Russian Federation (1961-Present)
Medium Tank – 19,019 Built
The T-62 medium tank, known under the factory index of Object 166, formally entered service in the Soviet Army on 12 August 1961. The tank was designed and built at Factory No. 183 in Nizhniy Tagil, known as Uralvagonzavod. It was accepted into service as a direct reaction to the new American M60 tank, which had been dispatched to the 3rd Armored Division in the USAREUR (U.S Army in Europe) in December 1960. The T-62 was put into service on the basis of outgunning it, and indeed, it would not be entirely inaccurate to consider the T-62’s most prominent highlight to be its 115mm smoothbore gun. However, the T-62 did not simply pop up overnight as a stopgap solution to house a big gun.
The design of the T-62 was an amalgamation of several existing concepts which had previously remained at the experimental stage, but nevertheless were already well established before the M60 was known in the USSR. In addition to the research work that had been accumulated since the start of a new Soviet medium tank programme in 1953, several more years were spent in shaping the T-62 into its final form between 1958 to 1960, when its military field tests concluded successfully. This all took place without direct knowledge of foreign tank developments and without any specific reference threats.
Roots of the T-62
The T-55 was the main tank from which most of the T-62’s primary characteristics were derived. However, Object 140 was the tank to which the T-62 owed its essential features, distinguishing it from the T-55. The Object 140 project was rooted in the development programme for a successor to the T-54, which began in 1953 with a meeting between the Ministry of Transport Machine Building and the three major tank design institutes of the USSR: The KhKBM design bureau of Factory No. 75 in Kharkov (KhPZ), headed by veteran Chief Designer Aleksander Morozov, who was responsible for the creation of the T-54; the VNII-100 Transmash design bureau of Factory No. 100 in Leningrad (LKZ), headed by Chief Designer Iosif Kotin; and the UKBTM design bureau of Factory No. 183 in Nizhniy Tagil (UVZ), headed by Chief Designer Leonid Kartsev. Proposals from the three design bureaus were studied and, after the elimination of VNII-100, only KhKBM and UKBTM remained. A draft resolution was then issued for the two organizations to begin pre-development research work.
In truth, UKBTM was never considered as a serious candidate and there was no good reason for its inclusion, other than to motivate Chief Designer Morozov with a competitor. Chief Designer Kartsev was well aware of the limited resources at UKBTM, which was suffering from a dearth of skilled personnel and inadequate facilities for experimental tank design work. However, the factory director had very good relations with the Minister for Transport Machine Building, Yu. E. Maksarev, who previously served as the director of Factory No. 183 from 1938-1941 in Kharkov, and then served as its wartime director from 1942-1946 in Uralvagonzavod. Thanks to the personal intervention of Maksarev, the proposal by Kartsev managed to enter the design competition.
The competition was not only open in the way that both factories participated with relatively few explicit instructions or assigned tasks, but also open in the nature of the work, allowing the two design bureaus to be highly exploratory in their approaches. In his memoirs, Chief Designer Kartsev claimed that the military-technical requirements were rather conservative, amounting to what was essentially a 10% improvement in combat characteristics over the T-54. The available information indicates that the Soviet leadership had no specific threat in mind when formulating these requirements, and that the T-54 had been taken as the representative sample of a “current” tank, from which improved technical characteristics were formulated to hopefully obtain a future tank that could outperform those of the hypothetical enemy. The two proposals from KhKBM and UKBTM were equally conservative in their design, both being conventionally laid out tanks that largely resembled modified T-54s, particularly the Object 430 proposal from Kharkov.
Only a modest improvement in protection was targeted, using the 100 mm gun of the T-54 and its ammunition as the reference threat to represent an enemy medium tank’s gun, in contrast to the 8.8 cm KwK 43 which had been used in the creation of the T-54. Meanwhile, the mobility characteristics would have been only slightly better than the T-54’s, ensured by a requirement to maintain the same 36-tonne combat weight of the T-54 paired with a prospective new 580 hp engine. Finally, the improvement in firepower was set by a new high-velocity 100 mm D-54 gun created by F. F. Petrov, the illustrious chief designer of Factory No. 9.
Parallel to the new medium tank programme, the option of simply upgrading the existing T-54 with the new gun was also explored by UVZ with the Object 141. It was nothing more than a T-54 with the D-54 in a turret with a new wedge-type trunnion design integral to the D-54, complete with a single-plane stabilizer.
As a result of the government’s rather modest demands, the projects from Nizhniy Tagil and Kharkov shared a great deal in common. By the time the programme had moved to the technical stage in 1955, both the Object 140 and the Object 430 turned out to have only modestly improved armor and new, but only slightly more powerful engines. Rather than pursue a grand leap in technical capability, both factories took the programme as an opportunity to refine existing tank design conventions. Both placed a strong emphasis on designing structural elements to improve crew working conditions while preserving a low tank silhouette and emphasizing the efficient use of armor mass. Both tanks featured an exceptionally wide turret ring to facilitate the loader’s task of handling the long 100 mm cartridges, and were also designed to include a cartridge casing ejector to relieve the loader’s workload and reduce propellant fume concentration levels in the fighting compartment. Both tanks had curved hull sides of variable thickness, forming sponsons that would meet up with the wide turret ring and thereby increase the tank’s internal volume with a minimal weight gain, and both tanks used very round, almost hemispherical, turrets to provide a larger internal volume and better protection with a minimal weight gain. New non-structural elements that could be found in both tanks included redesigned seats, the introduction of a dedicated crew heater, and a change in the position of the crew compartment ventilation intake to the rear, which was more favourable in terms of air quality due to reduced dust ingestion.
In 1955, UVZ ceased work on the Object 141 and began development on the Object 139 as a continuation of the same theme, although it was a more extensive effort. It was fitted with the same fire control system and gun as the Object 140, consisting of a TPS1 independently stabilized periscopic sight and the D-54TS, which was a D-54 equipped with the “Molniya” two-plane stabilizer. Object 139 differed only in that it lacked a backup telescopic sight, which was present in the Object 140 and in the T-10A and T-10B heavy tanks, where it had been implemented in serial production due to reliability issues with the TPS1 early in its career. Owing to the excess weight of the new gun relative to the D10-TS, the hull sides were thinned down from 80 mm to 70 mm to maintain a combat weight of 36 tonnes.
One Object 140 was built in late May 1957 for factory trials, and then another was built after the trials in late August 1957 with design corrections. During the process of assembling these tanks and carrying out their subsequent tests, Kartsev learned of the production, operability, and maintenance issues baked into the fundamental design of the powertrain and the hull, which could not provide reasonable access to the powertrain and was not suitable for mass production, as only the Izhora metalworking plant was capable of rolling variable thickness plates and pressing them into the desired curved shape to form the hull sides.
The foundations for the T-62 can be said to have been laid in the second half of 1957 in the midst of these events, when at the suggestion of Marshal Poluboyarov, the Head of the Armored Forces of the Soviet Army, Kartsev launched the Object 142 project as a private factory initiative. Object 142 was an adaptation of Object 140 that had its suspension and automotive components unified with the T-54B while retaining the Object 140 hull except for the rear, which was reverted to the T-54 design. One prototype was built in the first half of 1958.
However, all of this tinkering ultimately led nowhere. Owing to the core issues with the hull, the powertrain, and its integration in Object 140, Kartsev made the personal decision to formally request the termination of UVZ participation in the medium tank competition and withdraw the Object 140 project in March 1958. His request was granted, and on 6 July 1958, work on Object 140 was officially discontinued by a decree issued by the Council of Ministers of the USSR. At the same time, Object 139 was also discontinued owing to the inability of contractors to supply the necessary quantity of sights and stabilizers to support mass production, leaving UVZ with the Object 142 and the Object 150 missile tank as its only ongoing design projects.
After these failures, some success was found in the Object 142, which passed factory tests in the fall of 1958. However, likely due to the fact that it used the problematic curved sides of the Object 140 hull, Chief Designer Kartsev made the decision to cease work on this tank and instead began to approach the idea from the opposite direction; instead of adapting the Object 140 with T-54 parts, he would adapt the upcoming T-55 with Object 140 parts. This was the point at which the T-62 can be said to have begun its life in earnest.
The T-55 represented the sum of the efforts of the UKBTM design bureau, having just entered service on 8 May 1958, containing several key technologies which were migrated from the Object 140 project. This included a 580 hp engine, integrated air compressor, exhaust smokescreening system, and fuel tank-ammunition racks with a new fuel circuit design. The fuel system significantly increased both the ammunition load and fuel capacity of the tank, and also increased the survivability of the tank by using sequential fuel draining. Moreover, thousands of small design and production refinements over the service life of the T-54 had been accumulated thus far, and although the technology of its drivetrain was now dated and had little room for growth, it was at least well proven and had extensive logistical and technical support. However, the firepower and protection of the tank was completely unchanged from the T-54 in the classical senses, and so the combat capability of the tank was essentially stuck at an obsolete level.
Under the premise of upgrading an existing tank along the lines of the Object 139 and Object 141 projects, Chief Designer Kartsev decided to improve the T-55 by arming it with the D-54, but unlike those earlier efforts, which he had viewed as dead ends due to the insufficient size of the T-54 hull and turret, a new lengthened hull was designed based on the T-55 hull. Some elements of the Object 140 design were also added and a new single-piece cast turret based on the Object 140 turret was worked out. The resultant tank, known as Object 165, was essentially a T-55 bearing a new, bigger gun, and having the working space for the crew to make use of it effectively, with improved armor along the frontal part of the turret. Technologically, this was a relatively low-risk option, as the Object 140 turret was unproblematic and many of the best and most practical innovations from the Object 140 project had already been integrated into the T-55. If successful, the project could even partly fulfill the conservative requirements of the future Soviet medium tank programme in its original form in 1953.
A Smoothbore Gun
In late 1958, Soviet Premier Nikita Khrushchev was presented with the T-12 “Rapira” smoothbore anti-tank gun by the Main Rocket and Artillery Directorate (GRAU), which had begun development in 1957 at Factory No. 75 in Yurga and was being finalized at the time. The highlight of the gun was its high penetration power on sloped armor compared to standard 100 mm APBC (Armor Piercing Ballistic Capped) ammunition. Impressed, Khrushchev suggested replacing rifled guns in tanks with smoothbore guns, and to produce 200 such tanks in the next year. Despite the rather whimsical nature of the request, the idea of arming tanks with a smoothbore gun capable of high penetration on sloped armor was taken quite seriously. Chief Designer Kartsev recalls in his memoirs that he was urgently summoned to Moscow at the end of November 1958 to discuss the possibility of putting such a tank into production with representatives from various ministries, the military, and specialist institutions. Given that UVZ had just recently dropped out from the Soviet future medium tank competition, the factory was now ostensibly free to handle such a project if it came to fruition. Kartsev objected to the idea of putting the T-12 in a tank, citing the length of the ammunition as being unacceptable, instead proposing to develop a modification of the D-54 with a barrel bored out to 115 mm to obtain a smoothbore tank gun and to proceed using the ongoing Object 165 project, which now found itself in an astoundingly convenient circumstance.
This proposal was accepted, and on 31 December 1958, the Ministry of Defence approved the Object 165 for further development under the development theme of “Improving the combat qualities of a medium tank”, and UVZ received financing for the project under contract from the Main Armored Directorate (GBTU) of the Soviet Army. In January 1959, the Main Artillery Directorate (GAU) of the Soviet Army approved the technical specifications for the prospective new 115 mm gun and its ammunition based on preliminary calculations, and on 13 January, the State Committee for Defense Technology submitted a letter of recommendation on the further development of Object 166 to the USSR Council of Ministers.
The project theme for Object 166 was described by the State Committee as developing “a medium tank (based on the T-55) with a new powerful smoothbore gun stabilized in two planes and cartridges for it (codename “Molot”)”. However, this was revised less than two months later with only one change; the project was described as developing a “tank destroyer (based on the medium tank T-55) with a new powerful smoothbore gun stabilized in two planes of guidance and cartridges for it (codenamed “Molot”)”. This was to take place in the framework of the previously established theme for Object 165 and the timeline envisioned that trials could be carried out from 1959 to 1960, and that serial production could begin in 1961. The intent of the project was to “… provide, in comparison with the equipment of the T-55 tank, a significant increase in the initial velocity of an armor-piercing projectile, armor penetration, especially at large angles of inclination of the armor, and the range of a direct shot”, while at the same time specifying that the high explosive ammunition would simply be no worse than that of the T-55. Under this premise, the classification of Object 166 as a “tank destroyer” was somewhat understandable. It is worth noting that the go-ahead for Object 166 did not occur in the context of any specific threat, or at the very least, it has never been described as such in the available literature. How much was known about prospective threats from the likes of the T95 medium tank is also unclear, and the desire to overmatch threat tanks armed with the new 105 mm L7 gun was not expressed at all throughout the development of Object 166.
The task of designing the 115 mm smoothbore gun was assigned to Factory No. 9, NIMI was to create the ammunition for it, and the stabilization of the gun was to be sorted out by Factory No. 46. The workload was relatively light for all parties involved. For Factory No. 9, there was no need to design an entirely new gun, but simply create a new barrel to fire the new 115 mm ammunition while adapting the gun to remain within the same operating parameters as the D-54. For NIMI, which was previously responsible for designing the ammunition of the T-12 “Rapira” anti-tank gun, their work mainly involved adapting their existing 100 mm ammunition to a new caliber. They extensively reused their work on the cartridge cases, propellant, and their APFSDS (Armor Piercing Fin-Stabilized Discarding Sabot) and HEAT (High Explosive Anti-Tank) projectile designs, to the extent that the 115 mm HE-Frag round was created by simply modifying the HEAT round. Plant No. 46, which had previously engaged in a great deal of experimental work on tank gun stabilizers, also took a low-risk route, opting to adapt the STP-2 “Cyclone” stabilizer from the T-55 with elements of the PUOT-2S “Liven” stabilizer from the T-10M.
The completion of all of the technical projects was scheduled for the summer of 1959, and the production of two prototypes was scheduled for the first quarter of 1960. Military tests of the tanks, the guns and its ammunition were meant to take place in the second quarter of the same year.
In March 1959, a U-5 was fitted onto an ML-20 carriage by UVZ for control testing, and in this form, the gun was designated as the U-5B. In addition, a U-5 gun paired with a two-plane stabilizer, which then became known as a U-5TS, was fitted in an Object 141 test bed for verification testing. On 20 March, the tank was tested at the Pavlodar test site under NIMI. From 22 April to 24 June, tests of the U-5B and the ammunition were carried out at the same test site.
In August 1959, the technical design of the Object 166 “tank destroyer” was reviewed by the State Technical Committee, and on 6 August, the Object 166 design was approved by a resolution issued by the USSR Council of Ministers, opening the path for it to proceed to factory trials.
Work on Object 165 progressed alongside the work on Object 166, such that in October 1959, two prototypes of Object 165 and Object 166 each were built in metal at UVZ, and factory trials began in November, lasting until April 1960. A complete set of live fire tests were carried out on an Object 165 from 5-27 May 1960.
Purely By Chance
After its factory trials, Object 166 immediately moved on to military field testing, which lasted from April to September. Then Object 165 underwent a round of military field tests from September to December. The military field tests of Object 166 identified a need to improve the effectiveness of the tank when firing on the move, improve the cooling system, solve the electrical overloading of the G-5 generator, and so on. These delayed the tests beyond their planned completion in the second quarter of 1960, but nevertheless, the issues were solved and the tests concluded successfully. Despite this, a recommendation for the Soviet Army to take Object 166 into service could not be obtained, with no official reasons given. With the Object 166 project stalled in late 1960, Kartsev took the initiative to improve the tank further by fitting it with a supercharged engine and the suspension of Object 140, creating Object 167.
There was no obvious reason for the abrupt halt in the trialing process for the Object 166, particularly since the Object 430 was in its death throes by late 1960 and Morozov had no viable alternatives to offer. Kartsev, writing in his memoirs, expressed his belief that the reason was political in nature, as Morozov held more sway in the Ministry of Defence, and the Kharkov factory had already been earmarked as the institution that would build the Soviet Army’s future medium tank. However, it is equally possible that the Object 166 was simply not considered to be enough of an improvement over the T-54, and there was no compelling threat that would warrant the introduction of a new but fundamentally obsolescent tank into service. The Object 430 project was itself terminated by the government in February 1961 for this reason, despite the latest Object 430 prototypes having a decided technological advantage over Object 166.
The Object 166 project could have met a prosaic end here, joining the likes of Object 139, Object 141 and Object 142 on the list of abortive UVZ prototypes as Kartsev shifted his attention to Object 167, but then, another chance encounter with a high ranking government official set it back on track. In early January 1961, a minor scandal arose when Marshal Vasily Chuikov, Chief of the Soviet Armed Forces and Deputy Minister of Defense, was informed about the debut of the American M60 tank in the USAREUR, and that it had a 105 mm gun. In a subsequent meeting with Marshal Poluboyarov and representatives from the GBTU, Chuikov asked what the domestic defence industry had to fight it with, and Object 166 was brought up by Poluboyarov. Marshal Chuikov articulated his tacit approval for Object 166, and with that, its fate was secured. Kartsev attempted to push Object 167 instead, but he was overruled on the basis that it was more expedient to produce Object 166.
With Object 166 having already met all the prerequisites for adoption by the Soviet Army and having gained high-level political support, and Object 432 (which would later become the T-64) being far too immature for production, given that it had just barely started development as the successor to Object 430, it was now poised to be the next medium tank of the Soviet Army. In its recommendation, the State Technical Committee stated:
“Given that it will take some time to complete the development and production of the new medium tank Object 432 while M60 tanks from the USA are already entering service in capitalist armies, it is necessary to eliminate this lag from the USA in tank armament with the speedy adoption by the Soviet Army and setting up of production of medium tank Object 166, created on the basis of the T-55 tank, with a smoothbore 115 mm “Molot” gun.”
On 7 July 1961, Marshal R. Ya. Malinovsky, Minister of Defense of the USSR, and L. V. Smirnov, Chairman of the State Technical Committee, appealed to the Council of Ministers of the USSR with a report recommending both the Object 166 and Object 165 to enter service:
“Considering the significant increase in the combat qualities of the medium tank in comparison with the T-55 tank, achieved by installing the 115 mm smoothbore gun U-5TS, as well as the positive test results of the control prototype, we consider it appropriate to recommend the tank with a smoothbore “Molot” cannon for service in the Soviet Army and for serial production. Adoption of a medium tank with the “Molot” cannon ensures the superiority of Soviet tanks over tanks of capitalist armies armed with a 105 mm British cannon. At the same time, we recommend adopting said tank with a 100 mm U-8TS (D-54TS) cannon with a stabilizer in two planes. The issue of the serial production of tanks with the U-8TS (D-54) cannon should be resolved after working out armor-piercing subcaliber and cumulative projectiles for the specified gun. The Draft Resolution of the Central Committee of the CPSU and the Council of Ministers of the USSR on this issue is attached.”
On 12 August 1961, Object 166 formally entered service in the Soviet Army as the T-62 by order of the Minister of Defense of the USSR. A pre-production batch of only 25 tanks was produced in the remaining months of 1961. Serial production was not yet possible, as the supply chain for the new tank was still being organized. On 1 January 1962, UVZ began six months of downtime to retool its T-55 production line. Serial production began on 1 June 1962. The first official unveiling of the T-62 to the public was during the May Day parade on 1 May 1966, and the first opportunity for Western observers to see the T-62 was in November 1967, during that year’s October Revolution parade.
On 9 January 1962, Object 165 entered service as the T-62A, apparently receiving the unofficial name “Uralets”. A pre-production batch of five T-62A tanks was made, but a decision was made to eliminate the introduction of redundant calibers in the ground forces shortly thereafter, and as a result, serial production of the T-62A was never pursued. Work on the U-8TS gun was discontinued, but the technology of its APDS ammunition carried over to a new series of APDS rounds for the D10, D-25, and M62 guns. The T-62A differed from T-62 only in the gun, the glass cell in the sight containing the range scales, and the ammunition racks.
Production
After the T-62 entered service, it supplanted and then replaced the T-55 as the new standard medium tank of the Soviet Army. In 1962, the expansion of the tank fleet and rearmament of existing medium tank units continued to be carried out with deliveries of T-55 tanks from Factory No. 75 in Kharkov and Factory No. 174 in Omsk while UVZ was engaged in retooling its production line for the T-62. On 16 July 1962, the T-55 was replaced by the T-55A, but only Omsk adjusted its production line, as Kharkov was preoccupied with preparations for the T-64, formally halting T-55 production on 1 January 1964 after only delivering a small batch of tanks in 1963, but then briefly continuing small scale production until its production line for T-55 tanks was completely converted to T-64 production in 1967. On top of that, orders from the Ministry of Defence for T-55A tanks wound down drastically as T-62 production ramped up, such that by 1965, the total number of T-55A and T-55AK models delivered amounted to only around 500 tanks. T-62 tanks amounted to three quarters of the total number of medium tanks delivered to the Soviet Army, the rest being the T-64 and various T-55 models. A total of 19,019 T-62 tanks would be built by the time production switched over to the T-72 at UVZ in 1973, almost all of which were delivered to the Soviet Army. This was lower than the total number of T-55 tanks produced in the USSR, but it is solely due to the fact that T-55A production continued at Omsk until 1978 for export.
T-62 Production Figures
Year
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
Tanks built
275
1,100
1,600
1,500
1,420
1,505
1,957
1,970
2,280
2,215
2,209
1,620
Amusingly, when the T-62 entered service, it was assigned a combat effectiveness value of 1.15 against the T-55, which served as the baseline with a combat effectiveness value of 1.00. Keeping in mind that new 100 mm HEAT ammunition had just recently entered service, the fact that a T-62 was still considered to be 15% more effective than a T-55 was important for legitimizing its existence.
The production of a single T-62 took 5,855 work-hours, only negligibly more than the 5,723 work-hours required for one T-55 on the same UVZ production line. A similar relationship also existed when comparing the nominal prices, as a T-62 was always either equal to, or only marginally pricier than a T-55 throughout its production run (in the same factory). This was a major economic factor in its adoption, made possible by the economy of scale created by the breakneck production rate at UVZ, and it also influenced the export success of the T-62 in the 1970s, as the government sourced existing tanks from Soviet Army stocks to fill export orders rather than contracting UVZ to produce batches of tanks for individual customers. This allowed the USSR to sell tanks at very competitive prices and still have a profit margin, keeping a strong flow of foreign hard currency into the country, and it allowed UVZ to switch to breakneck production of T-72 tanks for the Soviet Army, keeping the cycle of efficient production going for the next generation of tanks.
The running costs of a T-62 were also equal to, or only marginally higher than a T-55. According to figures available in 1984, the total economic cost of running a T-62 tank for one kilometer, taking into account maintenance, repair and fuel consumption, amounted to 5.6 rubles, and for a T-55, it was 5.5 rubles. For comparison, a T-72 would cost 11.85 rubles to run.
As If By Divine Intervention
The creation of the T-62 was remarkable in that it would not have existed but for a precise series of three serendipitous events, all involving high ranking government officers. The first was the UKBTM entry into the future Soviet medium tank competition thanks to Minister Maksarev and Kartsev’s boldness to make such an adventurous proposal, the second was the whimsical request for a smoothbore tank gun by Premier Khrushchev, and the third was the reaction of Marshal Chuikov upon hearing the news about the new M60 tank. The fate of the T-62 and the UKBTM design bureau as a whole was shaped by what appears to be sheer coincidence.
In retrospect, it turned out to be extraordinarily fortuitous for the Soviet military that Premier Khrushchev was so keen on the T-12. Whether by extrapolation or accurate intelligence, the XM60 and Chieftain tanks were both designed and tested with high velocity 100 mm APCBC as their reference threat, essentially corresponding exactly to the D-54. If the fateful meeting with Kartsev had not taken place, either Object 165 or Object 430 (or a derivative of it) would have most likely entered service with a D-54 supplied with APCBC ammunition. At the time, 100 mm APDS existed, but would not be ready for service and mass production until the mid-1960s, and its use was unpalatable to the Soviet leadership due to the large weight of tungsten carbide used in its core. Moreover, with the new information available in 1964, it was understood that better ammunition alone would likely have been insufficient to overmatch the M60A1 and Chieftain, as they had partial resistance to 100 mm and 105 mm APDS as a byproduct of being designed to defend against high velocity 100 mm APCBC at some distance. In the end, tanks armed with the D-54 would likely have had to resort to using HEAT as the main anti-tank round for many years to come, in spite of the power of the gun.
This would have been all the more unfortunate given that the appearance of the M60 did not impress Soviet experts in any way other than the fact that it was armed with a 105 mm gun, known to be derived from the British 105 mm L7, and known to fire a standard APDS round with a muzzle velocity of 1,475 m/s. The M60 only aroused a certain amount of consternation because it was seen as the likely new standard tank for NATO. The adoption of the 105 mm L7 gun on Centurion tanks some years prior to the appearance of the M60 was not considered a significant development by the Soviet leadership due to the small military presence (in some texts, the term “insignificant” was used) of the British Army relative to the US Army and other NATO member states in the region, which had been principally supplied with American tanks. These included Italy, Belgium, and France. For this reason, and because of the industrial and economic might of the USA, the priority was on assessing the American tank threat above all other potential adversaries.
By 1964, enough accurate information on the M60A1 and Leopard had been gathered for a useful comparison, and in a informational reference document issued by the State Technical Committee (meant as a reference for industry experts to familiarize themselves on the current state of technology), it was reported that:
“The level of armor protection of the M-60 tank approximately corresponds to the armor protection of the domestic T-62 medium tank. At the same time, the ballistic resistance of the frontal part of the M-60 hull is higher than that of the T-62, and the turret is slightly lower than that of the T-62. The M-60 tank is defeated by the subcaliber rounds of the U5-TS cannon of the domestic T-62 tank at a range of 900-2,000 m (900 m – hull, 2,000 m – turret). At almost the same battle distances, the frontal armor of the T-62 tank can be defeated by the shots of the 105 mm cannon of the M-60 tank. The M-60 tank does not have anti-cumulative protection and, therefore, is defeated by the cumulative shells of the U5-TS cannon of the T-62 tank at point blank range”
“T-62 tanks … can defeat the frontal armor of a Leopard tank at a range of more than 3,000 m, and, therefore, surpass the Leopard tank in terms of armor protection, since the shots of the 105 mm cannon of the Leopard tank defeat the armor of the T-62 tank at ranges of 1,500-2,000 m”
Additionally, the frontal turret armor of the M60 or M48A2 was considered vulnerable from up to 2,800 m. The Chieftain was also evaluated, but intelligence was not as accurate. The upper glacis was considered strong due to its steeply sloping shape, but the turret was considered vulnerable out to 2,800 m. At this point in time, it was also believed that the Chieftain was still a 45-tonne tank as originally intended.
Design
Overall Design
From the standpoint of fire control, the T-62 was essentially the same as the T-55 on a technological level. Although the T-62 was considered a new tank when it was taken into service, most of its parts were standardized with the T-55 and crew training for these two tanks was so similar that practically no transitional training was required for a T-55 crew member to transfer to a T-62. In this respect, the relationship between the T-62 and the T-55 was very similar to the relationship between the M48 Patton and the M60. Because most of its non-structural parts were standardized with the T-55, there were a few positive implications in how readily the Soviet Army could absorb the T-62 into its tank fleet and manage its day-to-day needs, but from a technological perspective, it was a decidedly negative situation, as it meant that there was no truly major leap in combat effectiveness.
Even without taking into account devices such as the radio station, intercom system, periscopes, lighting devices, power cables, electrical connectors and various fasteners, which were not only standardized among tanks but among all Soviet armored fighting vehicles, there was a particularly high degree of unification between the T-62 and the T-55, excluding structural elements and their details. The main functional changes were in the main gun, the fittings for the ammunition, the fuel tanks, the auto-ejector mechanism, the commander’s primary periscope, and engine preheater. The total degree of unification between the T-62 and T-55 reached 65%. Many of the differences came from mundane details such as the pneumatic pipes used to connect the compressed air bottles to the engine and the linkages for the driver’s controls, which all had to be longer due to the increased hull length, the linkage for the TPN1 night sight, which had to be different due to the trunnion position of the U-5TS gun, the seats for the crew in the fighting compartment and the fittings around them, etc.
Improvements, which were backwards compatible with the T-55, included a new and improved injector preheater, new G-6.5 generator with forced air cooling, reinforced cooling fan and air compressor drives, and a reinforced third gear in the gearbox. The suspension was also improved with an increased bump travel of 160-162 mm and a rebound travel of 62-64 mm.
Structural Design
Structurally, the T-62 featured a welded hull composed of rolled 42 SM RHA steel plates of four main thicknesses. Additionally, the belly and engine deck plates were stamped out of thinner plates of several different thicknesses. The design of the hull was broadly similar to that of the T-54, but differed in its length, the design of the hole for the turret ring, the shape of the engine compartment, the angle of the hull roof, the layout of the suspension mounts, and a number of small structural details. The armor plate thicknesses are identical to the T-54 hull it was derived from, although one source states that the belly plates at the middle of the hull were 16 mm thick rather than 20 mm for weight reduction purposes. There was no hull roof over the engine deck, as the deck panels bolted directly to the hull sides to permit maximum accessibility to the engine compartment once removed. The deck was 15 mm thick.
T-62 Armor Plate Thickness Values
Belly
Crew compartment roof
Rear plate
Side plates
Glacis plates
20 mm
30 mm
45 mm
80 mm
100 mm
In order to optimize the gun’s depression angles in all-round rotation, the roof of the hull was tilted forwards by 0.5° (0°30′), while the engine deck was sloped at 3.25° (3°15’). This was a feature inherited from the Object 140’s hull design. The main reason for this shape was to allow the main gun to fully depress even when traversed over the engine deck, considering that the turret was offset by a forward tilt of 0.5°. It also gave a minor weight reduction by reducing the area covered by the side hull armor.
The concept of armor differentiation was used on both the hull and turret, with the protection level being the strongest in a frontal arc of 60° and declining rapidly outside this arc. Compared to the T-55, the internal height of the hull along the fighting compartment had been increased from 937 mm to 1,006 mm, and in the front, it had been increased from 927 to 939 mm. Additionally, the hull was lengthened by 386mm along the fighting compartment to accommodate the increased turret ring diameter. The engine compartment was slightly shorter than that of the T-55 due to the elimination of the slope on the rear plate. The rear plate was not completely flat, however, having a very slight 2° tilt. This was because the cooling fan mount and the fan drive from the gearbox power take-off were designed with this tilt in the T-54 and T-55, and since the entire assembly was carried over to the T-62, the same tilt was retained.
The turret was a single-piece casting of MBL-1 steel with a distinctly round shape, forming a perfect circle from a top view, and having a nearly hemispherical form in certain projections. The design of the turret was very close to the turret of the Object 140, but notably differed in that it did not use a stamped roof plate welded onto the circular “belt” formed by the turret wall, and the commander’s cupola was moulded into the turret rather than being a bolt-on structure. Other than the hole in the left cheek required by the TSh2-series sight, these refinements and their associated adjustments were the only major changes from the Object 140 turret. Production of serial T-62 turrets was carried out using steel molds.
The T-62’s turret had a considerably larger internal volume than the T-55 turret, but had almost the same weight while at the same time providing significantly better protection. This can be credited entirely to the use of a near-hemispherical shape. A sphere has the highest volume to surface area ratio of any 3-dimensional shape, and thus a hemispherical turret requires the smallest mass of armor to protect a given internal volume. At the same time, a sphere is also the strongest shape when uniformly loaded (for example, a bathysphere is spherical because it is the ideal shape to withstand crushing deep sea pressures). This was relevant for dissipating strong blast loads across the turret’s structure, and it is also a near-ideal shape for more uniformly dissipating shock energy from localized impacts. However, for a tank turret, using the pure shape of a perfect hemisphere is not ideal because the concept of armor differentiation can be leveraged to further lighten the structure. In this case, armor differentiation was applied in the design by drawing eccentric circles of different diameters to create smoothly contoured surfaces of variable thickness, decreasing in thickness as the impact angle increases.
The armor differentiation of the turret along the horizontal axis was done by making the outer contour of the turret an eccentric circle to its inner contour, so that the front of the turret had a large thickness in a wide arc and a shelf for equipment was created between the turret wall and the turret ring along the rear half. In the vertical axis, the turret wall was designed by the same method but with a larger difference in circle radius and increased eccentricity. The roof part was formed by taking into account the projected dimensions of the main gun when it was fully depressed and retracted at the end of its recoil stroke, as well as the restrictions imposed by the need to accommodate the commander’s cupola. The turret wall then joined up with the roof with a variable contour, tuned to help suppress the formation of cracks during the casting process. In this way, it was practical to cast an extremely robust turret in one piece without driving up the labor intensity of the process.
A noteworthy feature of the turret is the use of embedded wedge-type trunnions for the gun. This design required the turret cheek walls on either side of the gun embrasure to be hollowed out, so that the gun could be installed from behind by dropping the trunnions into the turret’s cheek itself. The gun would then be secured by bolting wedges above the trunnions, tightly clamping the gun in place. This design had a few mechanical advantages, such as increasing the radius of the elevation arc, making it easier to elevate the gun manually and allowing the stabilizer elevation piston to be moved closer to the gun embrasure while also gaining a larger lever arm and therefore a larger stabilizing moment, but it greatly reduced the armor thickness in front of the trunnion pins, and made it nearly impossible to extricate the gun if the gun embrasure area was deformed by a powerful shell strike.
Overall, the armor alone took up 50% of the tank’s total combat weight, equal to the T-54. This was possible thanks to a great deal of effort in removing excess weight wherever feasible and in the optimal shape of the turret, as the increase in the armor weight over the T-54 was absolutely minimal despite the larger internal volume of the T-62. Looking at its armor weight, which amounts to 18.3 tonnes, there is an excess of only 0.3 tonnes over the armor weight of the T-54, which, remarkably, is somehow less than the weight that would have been gained from the extension of the side hull plates alone (0.38 tonnes). Overall, less armor mass was used to achieve better protection. Given its total empty internal volume of 12.5 cubic meters, the T-62’s hull and turret have a specific structural weight of 1.464 tonnes per cubic meter, whereas a T-54 had a specific weight of 1.58 tonnes per cubic meter.
Crew Stations
The crew of a T-62 were equipped with the same controls and observation devices as their T-55 counterparts. The driver was provided with two periscopes, laid out to ensure that he could see both front corners of the hull. He could swap out one periscope for a night vision periscope, which could also be mounted externally when driving from an open-hatch. The loader had a single MK-4 rotating periscope for a relatively restricted view toward the left side of the turret. The gunner was provided with a single forward facing periscope for general observation and to alleviate carsickness, while his main observation device was the TSh2B-41 telescopic sight. A TPN-1 night sight paired with an L-2 “Luna” IR spotlight provided the T-62 with a basic night fighting capability, allowing the gunner to identify a tank-sized target at up to 800 m, though the spotlight was intended to be zeroed to the sight at 700 m. The commander was provided with four periscopes and a single primary observation periscope, which was initially a TKN-2, but was changed to a TKN-3 beginning in 1964. Both the TKN-2 and TKN-3 were combined day-night periscopes, paired with an OU-3GK IR spotlight. All night vision devices used Gen 0 image converters with S-1 photocathodes and as such, were dependent on IR illumination. Both the TKN-2 and TKN-3 had a fixed 5x magnification in the day channel and could be used to cue the gunner to a target with a press of the left thumb button.
Besides the main gun, the most significant qualitative improvement was in the working conditions of the crew in the fighting compartment, which was made possible thanks to a number of positive design choices. The main shortcoming of the T-54’s turret was that it was built according to wartime ergonomics standards, and the dimensions of the fighting compartment were not larger relative to the T-34-85. The T-62 crew had a conventional seating layout, with the commander and gunner seated in tandem on the left side of the gun, and the loader having the hull length of the turret on the right side of the gun to himself. All crew members were located in such a way that their feet would not leave the perimeter of the rotating turret floor when seated. The footrests for the gunner and commander were also laid out in such a way that they did not exceed the perimeter of the rotating floor. The driver’s station was on the left of the hull, and had an identical structural layout to the T-55 driver’s station, although the placement of some equipment was shifted.
The main design feature of the crew stations was that all seats in the turret were placed within the circumference of the turret ring and were located well below the turret ring level. This allowed the turret to be made shorter, as it only had to accommodate part of the seated height of the crew members, and a protruding cupola could be omitted for a streamlined, low profile cupola. The dome shape of the turret also meshed well with the needs of the loader, as it was tallest at the center, giving the loader the most vertical space when he stood next to the gun, and shortest around the front, where the loader would be ducked down to retrieve ammunition from the front hull racks.
However, the improvement to the gunner’s and commander’s stations was limited by the constraints posed by the hull width, which was unchanged from the T-54. Rather than expanding proportionally to the increase in turret ring diameter, the commander’s seat still had to be located forward enough that the diameter circumscribed by the seat did not exceed the internal hull width, hence the missing corner on the seat. However, the commander’s body was afforded more freedom because his seat was positioned at the level of the turret ring extensions built into the hull sides.
The gunner’s seat was located perpendicular to the rotating axis of the turret, allowing the gunner’s torso to be located at the point where the maximum width is available for a given turret ring diameter and gun width. The position of the gunner’s seat along the length of the turret was dictated by the length of his TSh2B-41 sight, which had a total length of 1,026-1,046 mm, varying slightly according to how much the articulated head was deflected. Because the articulated head of the TSh2B-41 sight was fitted coaxially to the trunnion of the gun, and the trunnion was located directly above the turret ring, the gunner had to be seated no less than 1 m behind the frontmost point of the turret ring. The same design principles for the layout of components were used in the T-54, so with the expanded turret ring diameter of the T-62, it is immediately apparent that significantly more room was available behind a gunner seated in a T-62 turret. In total, the difference was enough that the commander’s knees no longer straddled the gunner when seated normally, although the gunner would still have the commander’s knees pressed against his back.
The loader’s station was also expanded by the increased turret ring diameter, and additionally, the increase in hull length gave him more floor space to work. Also, unlike in a T-55, the rear hull ammunition racks were well clear of the rotating floor, and the large turret ring made them much more accessible to the loader. However, the diameter of the rotating hull floor was only marginally widened from 1,370 mm to 1,450 mm. The perimeter of the floor marks the boundary where the loader may stand without colliding with any fixed object in the hull. In this case, the floor diameter was restricted by the engine preheater. Anti-slip rubber mats were affixed to most of the fighting compartment floor, to the top of the escape hatch, and on the rotating floor.
The rotating floor was semi-rigidly connected to the turret through the VKU-27 rotating power unit at the center of the rotating floor via a steel pole which joined up with the mounting frame for the gunner’s seat. The steel pole also conveyed the power cables from the VKU-27 into the turret, where it connected to various devices in the turret. A ball detent torque limiter was present in the VKU-27, so that if the rotating floor was jammed for some reason, the turret and the electrical contacts in the VKU-27 would still be able to turn, providing a certain degree of isolation in the event that hull deformation from a mine blast jammed the rotating floor, which would otherwise be absent if the floor were to be rigidly joined to the turret, such as the floor in a turret basket.
A special section of the rotating floor was made openable, so that when the turret was turned slightly to the right, the hinged escape hatch would not be blocked from opening inward. The hatch itself was reasonably large, being around the same size as the driver’s hatch, but the fact that it could only be opened when the turret was in a specific position made its usefulness highly situational.
The increased hull length did not affect the front of the hull, leaving the driver’s station effectively identical to the driver’s station in a T-55. Even the front hull ammunition racks remained almost the same length as in a T-55, and the width that they occupied remained unchanged. This was because the right front ammunition rack in the T-55 had its cartridge slots offset to the left, owing to the original T-54 having its front ammunition racks offset to the left by a fuel tank wedged between them and the hull’s wall. In a T-62, the right front ammunition rack was not offset, allowing everything to remain almost identical to a T-55.
Strong ventilation was provided by a negative pressure ventilation system, where a fan in the engine compartment partition drew air from the crew compartment and blew it into the engine compartment, thereby putting the crew compartment under negative pressure. Additionally, the tank’s electrical generator used forced air cooling with an intake located in the crew compartment, and the engine compartment itself was held under negative pressure by the powerful cooling fan, so the intensity of the draft in the crew compartment grew as the engine revved up. This worked together with the ventilator blower to increase the intake rate of fresh air, and circulate pollutants out of the crew compartment after the main gun and coaxial machine gun were fired. Moreover, to supplement the ventilation system, personal fans were provided for each crew member except the commander.
However, this negative pressure ventilation system could not be used in a nuclear contaminated environment. When the tank locks down after a nuclear detonation is detected, the negative pressure system switches to a positive pressure system. The ventilation ports in the engine compartment partition would be sealed, and the blower functions at a higher power setting, allowing it to centrifugally remove dust and fill the crew compartment with purified air faster than it escapes. A slight overpressure is developed, thereby protecting the crew compartment from being irradiated by radioactive dust particles. The air circulation in the crew compartment worsens drastically in this mode, so the ventilation system is not used in this mode unless strictly necessary.
Protection
Concealment from enemy observation was provided by a combination of the tank’s diminutive silhouette and the standard matte green IR-absorbing NPF-10 paint. Additional colors of regular paint or enamel paint (during winter) could be added onto the IR-absorbing green base color to form deforming camouflage patterns, which could blend into local environments in both the optical and short infrared spectrums. The T-62 also featured an exhaust smokescreening system to provide visual and near-IR obscuration, a filtered overpressure system for atomic protection, and it had an automatic fire fighting system with three extinguisher bottles, providing three attempts to extinguish a fire in the engine compartment or crew compartment.
Armor protection remained unchanged from the T-55 aside from the turret. The upper glacis was sloped at 60°, and was completely immune to the 8.8 cm KwK 43 and 90 mm M41 guns firing APCBC and APCR/HVAP, and was protected from the 100 mm D10 from a short range. Data for the T-54 shows that, under a non-penetration criteria where the maximum damage is a crack, bulge, or cracked bulge of the rear surface of the armor, BR-412B has a velocity limit of 850 m/s (500 m) on its upper glacis, increasing to 920 m/s when striking the plate at a side angle of 30°. The lower glacis has a distance limit of 900 m, and the arc limit for the hull sides was 22°.
West German testing indicates that the hull of the T-62 could be defeated by 105 mm DM13 APDS from a distance of 1,800 m at its ballistic limit, defined as the maximum range at which it is possible to create a through hole in the armor. The margin of perforation is very small at the ballistic limit, as testing on a T-55 hull showed that the safety limit (guaranteed lack of perforation) was 2,000 m. The tests also showed that the DM13 round began to falter as the impact angle increased. A graph of the change in the ballistic limit with the armor slope shows that if the impact angle was increased slightly to 61°, which could be achieved if the hull were turned sideways by 14°, the safety limit would be reduced to 1,500 m. At an impact angle of 63°, which could be achieved if the hull were turned sideways by 25°, the safety limit would drop to 1,000 m. The same results are applicable for the T-62 hull.
The T-62’s turret could resist 100 mm BR-412B fired from the D10 at a limit velocity of 830 m/s in a frontal arc of 90°, under the same non-penetration criteria. For comparison, the T-55’s turret could resist this threat at a limit velocity of 810 m/s in a frontal arc of 60° (including the direct front), corresponding to a range of 800 m. In the same West German tests as mentioned earlier, it was found that 105 mm DM13 could not perforate the turret from the direct front even at impact velocities ranging from slightly below (1,468.8 m/s) to far in excess of the normal muzzle velocity (1,520.3 m/s), as long as the shot landed outside of weakened zones. The only penetrating shots were those that landed directly next to the gunner’s sight embrasure, which managed to burst sideways through the inner wall of the gunner’s sight cutout, creating cracks that were large enough for light to pass through. The impact angles on the turret were fairly moderate, ranging from 40° to 50°. Similar results might be expected from the L52 (M728) APDS round, which had a tungsten alloy core that performed better than L28 (M392) at high impact angles of 60° and above, but had no advantage on moderately sloped targets (30-50°) and was inferior on flat and mildly sloped targets (0-30°).
However, the overall frontal arc protection was somewhat lower, with one source indicating that the turret was protected against 105 mm APDS from 800 m across its entire frontal projection.
Additionally, structural holes such as the gun embrasure, periscope slots, and holes for the sights had been tested with 7.62 mm and 12.7 mm machine gun fire to ensure jam resistance. The rear of the hull did not protect from 14.5 mm machine gun fire, although the rear of the turret did. That said, the rear of the hull only fell short of immunity from 14.5 mm fire by a small margin, a margin which was previously covered by the 17° slope of the rear plate on the T-54 hull.
The protection of the T-62 from nuclear threats was considered to be equivalent to other Soviet medium tanks, but significantly worse than the T-55A, as it lacked anti-nuclear lining and cladding over the crew stations. An experimental variant of the T-62 fitted with anti-radiation lining known as Object 166P was tested, but did not enter service.
Armament
The T-62 was the world’s first tank to introduce a smoothbore gun and to use APFSDS ammunition as its standard armor-piercing ammunition. It was not the first modern smoothbore large caliber gun in service though, as that distinction belonged to the T-12 towed anti-tank gun. The 115 mm tank gun had the factory designation of U-5TS and it was assigned a GRAU index of 2A20. A number of stabilizer components were attached underneath the gun, and an automatic case ejector was fitted behind the breech.
The gun and coaxial machine gun were stabilized in two planes by the Meteor stabilizer system. Meteor-M and Meteor-M1 variants of the stabilizer with transistorized electronics were also produced in the 1980s for refitting tanks to the T-62M standard. The performance characteristics were identical to the basic version. Officially, the turret rotation speed was not less than 16° per second (full rotation in 22.5 seconds). The real turret traverse speed under normal conditions would be somewhat higher, with US Army and West German tests finding that a full rotation took 20 seconds (18° per second), or 22 seconds with the tank situated at an unspecified slope, and Russian literature sources give a rotation speed of 17-19.6° per second.
The stabilizer had a loader’s assist feature, turned on by default. After a shot was fired, rotation of the turret would be locked and the gun would be elevated by 2.5° for the convenience of the loader when retrieving ammunition from the hull and when loading a round into the gun. Control of the turret and gun returned to the gunner once the loader pressed his safety switch, with the gun returning to its previous elevation angle automatically. This feature could be turned on manually before a shot was fired. He had to do this before reloading the machine gun when the tank was on the move, as it would be dangerous for him to have his hands underneath the open top cover in case the gun suddenly depressed as the tank rode over a bump. The loader’s assist feature was later added to the T-55A in 1965. After a shot was fired, the auto-ejector was triggered independently of the loader’s assist, completing the ejection cycle within 2-3 seconds from the moment of the shot until the return of the ejector behind the breech.
Design-wise, the U-5TS was built on the basis of the D-54TS, and it was even alleged that the first five guns built for Object 166 trials were built by refitting existing D-54TS guns with a new barrel. The similarities remained after the D-54TS evolved into the U-8TS (2A24), which was the same gun but with new rifling optimized for APDS ammunition, a new stabilizer, and an automatic case ejector of the same design as the U-5TS. Moreover, the 115 mm gun was created on the basis of matching the performance of the D-54TS gun with all ammunition types while being easier to load, but because a larger caliber provided favourable internal ballistics performance with sub-caliber ammunition, the U-5TS managed to outperform the U-8TS with contemporary ammunition technology.
Structurally, the U-5TS closely resembled a U-8TS, although most of its major assemblies were no longer interchangeable. Many of its small parts, such as fasteners, gaskets, and pins, were either generic parts or parts shared with earlier guns, including the D10 (52-PT-412) and D-30 (2A18). The barrel length of the U-5TS was 5,700 mm and the gun length (barrel and breech block) was 6,050 mm, the same as the U-8TS. The recoil mechanism was also changed. In total, the oscillating mass of the U-5TS was 2,315 kg, excluding the stabilizer and case ejection mechanism, as compared to an oscillating mass of 1,908 kg for the D10-T in a T-54 turret. The weight of the gun alone, when counting only the barrel and breech block assembly, was 1,810 kg. This was 400 kg heavier than a D10-T.
The primary justification for a smoothbore gun is that the nature of barrel wear with a smoothbore barrel is more conducive to a high pressure, high velocity gun, as it eliminates the short accuracy life of rifled barrels from throat erosion. This was particularly relevant for rifled guns designed for “hot” propellant, which develops a high peak pressure that drops off rapidly. In such guns, the barrel throat experiences exceptionally high pressure and heat, but this dissipates quickly as the projectile moves through the barrel and the volume occupied by the propellant gases increases, leading to uneven erosion of the rifling lands. The loss in accuracy from this type of erosion does not manifest in smoothbore guns, so the only factor in the accuracy life of a smoothbore barrel is the total eroded thickness of the bore.
The U-5TS did not require a muzzle brake because it was not capable of launching heavy projectiles at a high muzzle velocity, only light projectiles. This was in contrast to the D-54TS/U-8TS, which was a classical high velocity gun, designed to launch a 16.1 kg AP projectile at a muzzle velocity of 1,015 m/s, with a muzzle brake and recoil system made to handle the immense recoil. Although the muzzle energy did not drop so drastically, the difference in momentum between a sub-caliber round and a full-caliber round was enormous, which was reflected in the recoil impulse. The U-5TS was directly equivalent to the L7 in this regard, which was designed according to the same principles.
Initially, the thinning of the barrel wall of the first few 115 mm guns made from boring out the original D-54 barrel did not result in a change in the strength of the barrel, but reduced its stiffness, apparently causing the guns for the first few Object 166 tanks to exhibit a drifting zero. It is unlikely that this continued to be true for serially produced U-5TS guns, because the barrel must have undergone a redesign that redistributed its weight, as evidenced by the different position of the fume extractor. A reworking of the barrel wall’s thickness profile would be needed to address the change in balance caused by the absence of a muzzle brake and the significant mass removed by boring out the barrel. Moreover, a barrel of the same weight but with larger inner and outer diameters would have greater stiffness due to a larger second moment of area.
Main Gun Ammunition
As a smoothbore gun, the U-5TS was well adapted to fin-stabilized high velocity rounds, but this came at the expense of less efficient HE-Frag shells compared to spin-stabilized shells. This was due to the parasitic mass and drag of stabilizing fins, which would also produce less of a stabilizing moment at long range, where the projectile velocity is low. The shells would therefore tend to be lighter, costlier, shorter ranged and less precise at long range. These shortcomings could be minimized with a heavier shell fired at a reduced charge, but the ammunition designers likely chose the more expedient option of adapting an existing design to stay within the tight deadline. Initially, a 3UOF1 HE-Frag round closely resembling the 115 mm 3UBK3 HEAT round was used, but only on an interim basis, as its substandard long-range accuracy and suboptimal explosive filling ratio were deemed unsatisfactory.
By September 1963, work on a “long-range” HE-Frag shell design was underway to address the issues with the interim HE-Frag shell, mainly focused on improving long-range accuracy to a level that was not too far off from the HE-Frag shells fired by the D-54TS. No other suitable HE-Frag shell design was available to be adapted for the 115 mm gun, as even the T-12 lacked HE-Frag shells, being entirely focused on an anti-tank role. This much-needed “long-range” fin-stabilized HE-Frag shell design was introduced into the Soviet Army for multiple gun calibers all at once in 1967. For the T-12 in the form of the 3UOF3 round, followed by the 3UOF6 round for the T-62, and the 125 mm 3VOF22 round for the T-64A. The main innovations lay in the streamlined ogive shape of the projectile nose, the increased thickness of the casing walls to increase sectional density, the lack of wall thinning along the nose of the body (to push the center of gravity forward) unlike conventional shells, and the new aluminium tail boom with a boattail-shaped fairing over the base of the projectile.
The 3UBM3 and 3UBM4 APFSDS rounds entered service concurrently with the T-62. The 3UBM3 round was intended to provide high penetration power on both sloped and flat targets, high enough to compete closely with an APDS round fired from the D-54TS while using only a fraction of the amount of tungsten, The 3UBM4 round was an even cheaper round with an all-steel projectile that would provide high penetration power on sloped targets but forego penetration performance on flat targets. In practice, the 3BM4 was both cheaper and more effective due to slightly better penetration on sloped armor, given that flat armor would have been a very rare sight in the hypothetical modern battlefield of the time.
Both rounds met the specified tactical-technical characteristics used to approve the “Molot” gun in January 1959, wherein the basic armor-piercing round was supposed to perforate 135 mm RHA at a 60º angle from 1,000 m, and perforate 100 mm RHA at 60° from 2,000 meters. Both rounds could perforate 130 mm RHA at 60° from 1,150-1,250 m and 100 mm RHA at 60° from 2,360-2,390 m.
The HEAT ammunition for the U-5TS was considered capable of defeating all known tanks, and its effectiveness was limited only by its high fuzing angle limit of 77°, which was possible thanks to its pointed conical nose. Its penetration power was outstanding, with the 3BK4M shell having an average penetration of 500mm RHA on 0° and 60° targets, although its rated penetration was only 440mm RHA. The cheaper 3BK4 shell, with a steel liner instead of a copper liner, had less penetration but produced a stronger post-penetration effect.
T-62 Ammunition Performance Specifications
Ammunition
Type
Cartridge Mass
Projectile Mass
Explosive Filler
Muzzle Velocity
Point Blank Range (2 m target)
3BM3
APFSDS
22 kg
5.55 kg
–
1,615 m/s
1,870 m
3BM4
APFSDS
22 kg
5.55 kg
–
1,650 m/s
1,870 m
3BK4(M)
HEAT
26 kg
12.97 kg
1.55 kg (1.478 kg) A-IX-1
950 m/s
990 m
3OF11
HE-Frag
28 kg
14.86 kg
2.7 kg TNT
905 m/s
970 m
3OF18
HE-Frag
30.8 kg
17.86 kg
2.79 kg TNT
750 m/s
–
Secondary Armament
In addition to the 115 mm main gun, the T-62 was fitted with a SGMT coaxial machine gun chambered in 7.62×54 mm. Beginning in August 1964, the SGMT was replaced by the new PKT as part of the Soviet Army’s overall push to standardize on the PK general purpose machine gun. The PKT could be fitted onto the existing coaxial mount in the tank and the two machine guns had barrels of the same length, ensuring that the shots would be ballistically matched. This was done so that the PKT would be easily interchangeable with the SGMT, as there was no need to modify the machine gun mount or swap out the glass viewfinder insert in the gunner’s sight to account for differing ballistics.
The same ammunition belts and 250-round boxes used with the SGMT were also compatible with the PKT. Ten ammunition boxes were available inside the tank, one mounted on the machine gun and the rest scattered in various stowage points in the hull, for a total combat load of 2,500 rounds of ammunition. This load was consistent with other Soviet armored fighting vehicles, which were all designed for a combat load of around 2,000 rounds for their 7.62 mm coaxial machine guns.
In 1969, it was decided to install the DShKMT anti-aircraft machine gun on T-55, T-55A, and T-62 tanks and their subsequent modifications beginning in May 1970. The new requirement for an anti-aircraft machine gun, driven by combat reports of American helicopters and gunships in the Vietnam War, returned the DShKM to medium tanks, missing since the T-55. It was installed to a new loader’s cupola with a traverse lock, differentiating it from the basic T-54 loader’s cupola. The DShKM was fed with standard 50-round boxes. One box is stowed on the machine gun mount and another five boxes are stowed to the side of the turret next to the loader’s cupola for easy access, giving a total ammunition load of 300 rounds.
Suspension
The T-62’s suspension features five pairs of roadwheels, independently sprung with torsion bars, complete with unsupported all-steel tracks. Depending on the time period, the tank may have been outfitted with the OMSh type track (dead track), or the heavier but more durable and efficient RMSh type track (live track). Beginning in 1965, RMSh tracks were fitted to new-production T-62 tanks, and retrofits of existing tanks would take place throughout the 1970s and 1980s. A new drive sprocket was required for the new track.
Early T-62s fitted with the original OMSh track had 96 track links on each side rather than 90 track links as on the T-55, due to the longer hull of the T-62 compared to the T-55. This gave each set of tracks a weight of 1,447 kg, slightly heavier than on the T-55 (1,328 kg). This represented a modest increase in the unsprung mass of the suspension, in return for a longer ground contact length of 4,230 mm instead of 3,840 mm for a net reduction in the nominal ground pressure of the T-62. This translated to a higher tractive efficiency in soft terrain, but the turning resistance also increased. For tanks fitted with RMSh tracks, a full set consisted of 97 links, giving a weight of 1,655 kg.
A T-62 tank fitted with RMSh tracks would weigh 538 kg more than a basic tank with the original OMSh tracks. With RMSh tracks fitted, the tank combat weight increased to 37 tonnes. However, experimental data showed that, when installed on a medium tank, power losses in the suspension were reduced by an average of 20% compared to OMSh tracks. This large improvement was mainly due to the elimination of dry friction between the track links and the track pins, and the reduction of dynamic oscillations of the unsupported upper track run, which induced large losses at high speed. As a result, the average speed was increased by 15% and the top speed also saw an increase, despite adding weight to the tank.
The diameter of the roadwheels was 810 mm. They had a dual-disc construction with a central gap for guide horns. Steel wear plates lined the inner rim of the roadwheels to limit wear on the aluminium roadwheel discs from the steel track guide horns. The first and last pair of roadwheels had rotary vane shock absorbers fitted, like on the T-55.
The main feature of the T-62 suspension that distinguished it from the T-55 suspension at the time it was introduced was its new torsion bars, made from an improved steel alloy but retaining full interchangeability with the existing suspension. The overall vertical travel range of the suspension was 220-224 mm, with the bump travel being 160 mm to 162 mm, and the rebound travel being 62-64 mm. T-54 and T-55 tanks would later receive the new torsion bars during capital overhauls as well.
Engine
The T-62 was powered by a V-55V liquid-cooled, naturally aspirated diesel engine. Compared to the basic V-54 engines used in the T-54 series, the V-55 generated more torque at the same range of engine speeds by having a uniformly higher fuel injection rate, thus producing a proportional increase in power across the entire operating speed range. The compression ratio was increased to 15 from the original ratio of 14 in the V-54 by modifying the cylinder head geometry, thereby improving the combustion efficiency to compensate for the higher fuel flow, keeping the gross fuel consumption equal to the V-54.
V-55V Engine Performance Specifications
Technical characteristics
Data
Engine layout
60-degree V12
Compression ratio
15
Maximum power (hp)
580
Maximum torque (Nm)
2,354
Minimum specific fuel consumption (g/hp.h)
172
Idle speed (RPM)
600
Maximum speed (RPM)
2,200
Dry weight (kg)
920
Dimensions (L x W x H, mm)
1,584 x 986 x 897
The only difference between the V-55V and the basic V-55 used in the T-55 was that the latter was fitted with a 5 kW G-5 generator, whereas the V-55V had a more powerful 6.5 kW G-6.5 generator. The generator was a clamp-on accessory that did not change the structural design of the engine itself. The installation of a more powerful generator on the T-62 was necessary to deal with the increased power demands of the “Meteor” gun stabilizer. The generator was connected to the front of the engine via a fluid coupling, driving the rotor and the impellers of the cooling system. Clean air was taken through the crew compartment via a hole in the engine compartment firewall, but it could also be switched to take air from the engine compartment, although there was usually no reason to do this, as it reduced air flow through the crew compartment and increased dust contamination of the generator windings. However, in the case of a nuclear attack, the nuclear protection system automatically switched the intake to draw air from the engine compartment instead, preventing the loss of the overpressure in the crew compartment.
The engine starter motor was a separate device located on the intermediate gearbox between the engine and gearbox. It connected to the engine flywheel in the clutch pack through a geared tooth.
Transmission
The T-62 had a manual mechanical transmission with a multi-plate dry friction clutch and a synchronized two-shaft gearbox with a conventional design with splash lubrication. A power takeoff unit on top of the gearbox powered the cooling fan and air compressor. The intermediate gearbox connecting the engine to the gearbox had a gear ratio of 0.7, unlike many tank gearboxes of the time which used a reduction gear input. By reducing the torque flowing out of the engine, it was possible to reduce the stress in the clutch and use smaller gears and power shafts in the gearbox, which in turn reduced the overall size and weight of the unit and reduced the rotating mass (and moment of inertia) in the drivetrain, thus decreasing the stress in the gears during acceleration and braking and reducing the wear on the synchronizer cones.
In turn, the gearbox itself had low reduction ratios except in 1st gear and reverse, thus reducing the stress on the final drives, particularly in the long-term, as much more time was spent driving in higher gears than in 1st gear, 2nd gear, or reverse, both in peacetime and during war. Additionally, a peacetime study found that most of the driving time in T-54 and T-55 tanks was spent in 3rd gear during both summer and winter conditions, on dirt roads and off-road. For this reason, the T-62 gearbox had a reinforced 3rd gear. The weakest link in the powertrain of the T-62 was the 4th gear owing to poor lubrication relative to the other gears. For some reason, with the constant rotation of the gears keeping the oil flowing around the gears and circulating in the gearbox through the transverse partitions in the gearbox, there would be less oil ending up at the 4th gear than in all other gears. This issue was never solved, and was only acceptable due to the relatively infrequent usage of the fourth gear.
The concept of implementing minimal gear reductions in the drivetrain until the final drives became common after WWII, both in tanks and in commercial vehicles designed to bear heavy loads across difficult terrain, including tractors and off-roading trucks. The transmissions of tanks like the Centurion and the Patton series were also designed according to this concept, and both tanks used spur gear final drives with a high reduction ratio. Out of all the positive effects from this design solution, the most important for the T-62 was that it increased the service life of all drive units downstream of the intermediate gearbox.
Steering was accomplished using two-stage planetary reduction gears, one on each side, placed between the gearbox and the final drives, and integrated with the steering clutch packs. When the steering tiller was pulled back to position 1, the clutch pressure plate would first be released and then a band brake would be tightened around the sun gear of the planetary set, engaging a gear reduction of 1.42. If the steering tiller was not pulled far enough to enter position 1, the track would merely be declutched. Pulling the steering tiller back further to position 2 released the steering brake and tightened the service brake band, which was made much wider to dissipate the heat of stopping the tank. With this mechanism, the tank could perform gentle turns with a free radius, geared turns or clutch-brake turns. Due to the need to limit wear on these dry friction elements, the steering mechanism was designed to engage in discrete steps, but this had the side effect of making the steering tillers rather jerky to operate.
Gearbox Gearing Ratios and Speeds
Gear
Gear ratio
Overall gear ratio
Tank speed at 2,000 RPM (km/h)
Overall gear ratio with reduction
Tank speed at 2,000 RPM with reduction (km/h)
R
6.0
28.17
7.61
–
–
1
6.0
28.17
7.61
–
–
2
2.8
13.15
16.31
18.67
11.48
3
2.0
9.39
22.84
13.33
16.08
4
1.43
6.71
31.94
9.53
22.48
5
0.9
4.23
50.75
6.00
35.76
Geared steering ensures that the motion of the tracks is kinematically fixed at all times, but they are left kinetically flexible owing to their shared connection to the gearbox output shaft, analogous to off-road vehicles with a locked differential. This provides more effective delivery of engine power in poor terrain conditions, but due to the slowing of one track, a geared turn causes a reduction in vehicle speed. To avoid slowing down, it is possible to steer by only de-clutching one track. It is also possible to obtain additional torque multiplication by pulling both steering tillers back, allowing the driver to essentially downshift by the equivalent of one gear without the prolonged interruption of engine power from performing a gear change.
The final drives were shared with the T-55. They were a two-stage compound gear design, with a spur gear pair to perform the first reduction, and a planetary gear set coaxial to the drive sprocket to perform the second reduction. The final drives provided a high reduction ratio of 6.706, giving the drivetrain enough overall torque multiplication for the needs of the tank. This final drive design also complemented the increased torque from the 580 hp engine of the T-55, having a smaller reduction ratio of 6.706 instead of 6.778 on the T-54 series, and being much more durable, as the peak tangential forces on the gear teeth were 3-3.5 times lower than in the T-54 final drives and the stress was reduced by 2 times. Rather than to meaningfully affect the driving performance of the tank, these new final drives were built to attain a longer service life under high load compared to the T-54’s final drives, which already attained a failure-free service life of 7,000-10,000 km by the time the new compound design was introduced. Nevertheless, the slight adjustment to the gear ratio gave the T-62 a nominal top speed of 50 km/h at an engine speed of 2,000 RPM, the same as the T-55 and 2 km/h quicker than the T-54.
The clutch was a dry multi-disc design containing a pack of friction discs, all made from 30KhGSA alloy steel. An array of 18 coil springs kept the discs in engagement. The main weakness of the clutch design lay in the fact that steel friction discs do not have a high tolerance for slippage, as they can warp much more readily under intense heating compared to discs with composite or ceramic pads. Coupled with the lack of cooling aside from air cooling across the clutch housing, this made the clutch a serious weak point in the T-54, which was ameliorated only after a total of 33 changes were made to the design of the clutch, implemented over a 9-year period from 1948 to 1957. After the T-62 entered service, there were two major revisions that increased the number of friction discs, from 13 discs to 17 discs in 1965, followed by a final change from 17 discs to 19 discs. With each modification, the clutch life improved, and the need for periodic clutch adjustments became more and more infrequent.
In order to lessen the dependency of the reliability of the clutch on driver skill, a hydropneumatic pedal assist mechanism was present to take over the task of clutch operation from the driver. It had a bang-bang control system and would be activated when the clutch pedal touched a switch after a short push. The hydropneumatic assist ensured quick de-clutching (in 0.1-0.3 seconds) and smooth, shockless clutch engagement (in 0.4-0.6 seconds), regardless of the driver’s skill. With the hydropneumatic assist fitted, the force needed to depress the clutch pedal was 2-2.5 times less than normal.
Fuel Tanks
The on-board fuel carried in a T-62 was divided between four internal bakelite-coated steel tanks, holding 675 liters, and three external tanks on the fenders with a capacity of 285 liters, for a total capacity of 960 liters. Additionally, a pair of external 200-liter fuel drums could be mounted onto the rear of the hull for extended range.
Like in the T-55, sequential fuel draining was implemented. The driver had a control knob located beside the right steering lever to select which set of fuel tanks he wanted to draw from, choosing between using all fuel tanks or using the internal fuel tanks only, or he could cut off all fuel flow entirely. If all fuel tanks were used, the external fender fuel tanks were drained first, then the rear starboard tank, and then finally the group of three front fuel tanks. Alternatively, if the driver switched to internal fuel only, then only the group of three front fuel tanks was drained. The rear starboard fuel tank was not drained, even if it was full.
Automotive Performance
The nominal top speed of a basic T-62 tank was 49 km/h. If fitted with RMSh tracks, the achievable top speed of the tank may increase to 54 km/h based on results achieved with the T-55. West German testing of a T-62 conducted in 1974 using a captured T-62 from the 1973 Yom Kippur War found that its maximum speed was 52.6 km/h. During Soviet military field tests, the average speed of the tank during road marches was 32-35 km/h, or 22-27 km/h when driving over a variety of dirt roads and off-road terrain types.
Technically, the absolute top speed of the T-62 would be 55.83 km/h, which might be achieved by running the engine to its redline speed of 2,200 RPM in 5th gear. Whether this speed was actually attainable on a level road was dependent on the particular characteristics of the road surface and the tracks fitted to the tank. With the original OMSh tracks, the large power losses at high speed inhibited the tank to a true top speed of 49 km/h at 2,000 RPM, according to Soviet testing. The engine developed less torque above this speed, so it would be physically impossible to further accelerate the tank barring some changes in external factors. For instance, a reduction in air temperature and better road quality may explain the higher top speed recorded in the West German mobility tests. When RMSh tracks were fitted to a T-55, the reduction in power losses permitted it to attain a top speed of 54 km/h, indicating that the T-62 may also have been capable of a similar true top speed if fitted with RMSh tracks.
This was not uncommon for tanks of the time, as the torque available in top gear would generally be insufficient to overcome high rolling resistances. In some cases, the slope of the engine torque curve fell behind the slope of the increase in rolling resistance, leading to the top speed being lower than expected. For instance, the M60 should technically have been capable of a top speed of 51.3 km/h at the rated engine speed of 2,400 RPM, or 56.5 km/h if the engine ran to its redline speed of 2,640 RPM. However, the maximum sustained speed on a level road was limited to only 48 km/h.
According to West German testing from 1974, a T-62 would take 22.75 seconds to reach 40 km/h on a paved road, as compared to the Leopard 1, which could reach 40 km/h in just 14.2 seconds. The M60A1 with the T97E2 track reached 40 km/h in 25 seconds, and with the heavier and more durable T142 track which began replacing the T97E2 in 1974, the acceleration to 40 km/h fell to 30 seconds. As a last point of comparison, Soviet testing found that the Chieftain Mk. 5R required an even longer time of 34-35 seconds to reach a speed of 40 km/h.
The maximum slope surmountable by the tank was 32° and the maximum permissible side slope was 30°. However, due to the lack of a torque converter, starting and accelerating from a stop on a steep grade of 60% was difficult. Shifting gears on a steep slope was also practically impossible, so drivers had to rely on the gear reduction of the steering units as a surrogate for downshifting or upshifting when a change in traction was necessary. The tank could cross a 2.85 m trench, climb a vertical obstacle up to 0.8 m tall, and ford a water obstacle up to 1.4 m in depth without preparation, or snorkel up to 5.0 m.
In terms of fuel economy, the performance of the T-62 was quite good, even for a tank of its weight, considering the high average speeds achieved. According to the figures given in the T-62’s technical manual, which was written using the results of military field tests, the fuel consumption per 100 km would be 300-330 liters when traveling on dirt roads (cross-country) and 190-210 liters when traveling on paved roads.
The driving range of the tank with its integral fuel supply was 450 km on paved roads and 320 km on dirt roads. With the addition of two fuel drums, the driving range was extended to 650 km on paved roads and 450 km on dirt roads.
In Soviet and Russian Service
The T-62 took part in several of the largest and deadliest conflicts of the late 20th century. During its service in the Soviet Army, T-62 tanks were involved in three major Soviet military operations, and it also saw extensive use in the Middle East and Africa. T-62 tanks also saw combat in the hands of the Russian Army despite its obsolescence, mainly because many of the units based in the Caucasus were of a lower priority and had not fully switched over to more modern tanks when major conflicts erupted in the region, such as the wars in Chechnya and the Russo-Georgian War.
Prague Spring
The first military deployment of the T-62 was to Czechoslovakia in August 1968, when the Soviet Army was sent in together with a few other Warsaw Pact armies for a show of force by the Soviet leadership during the Prague Spring. This operation, known as Operation Danube, involved the mobilization of several Soviet tank units from the GSFG (Group of Soviet Forces in Germany), most notably the 1st Guards Tank Division, which was equipped with T-62 tanks and T-10M heavy tanks. However, the majority of participating tank units were not from East Germany, and so around 80% of the Soviet tanks that were present in Czechoslovakia during the operation were T-54s or T-55s.
Damansky Incident
Its second deployment was at the Sino-Soviet border in March 1969, in a conflict known as the Damansky Incident, where at least one platoon of T-62 tanks were involved in intense combat. This incident was in the context of the Sino-Soviet split and was part of the seven-month undeclared Sino-Soviet border conflict.
During a maneuver, one T-62 with the side number 545 was disabled in an ambush, and both sides withdrew from the site after the ensuing short skirmish. T-62 No. 545 became the focus of further battles, ending with the Chinese forces managing to recover it. A great number of details regarding the initial ambush and the battles that followed are still unclear, and many of the things written on what the Chinese obtained from T-62 No. 545 are in dispute. Regardless, the captured T-62 remains exhibited to this day at the Military Museum of the Chinese People’s Revolution in Beijing.
Afghanistan
The Soviet 40th Army stationed at the border with Afghanistan had its motor rifle regiments almost fully equipped with T-62 tanks. When the 40th Army was sent in to occupy Afghanistan after a successful Communist government takeover, the T-62 became the main tank used by Soviet forces. T-62 tanks were also handed over to the Afghan Army, supplementing the existing fleet of T-55 tanks that had been acquired prior to the Communist takeover. Lessons learned from the asymmetrical nature of the fighting in Afghanistan led to the inclusion of several anti-mine protection features into the T-55AM and T-62M modernization project, which was initially completely unrelated to Afghanistan and had been designed according to conventional army standards.
The 40th Army was almost fully equipped with the T-62 when it began its garrison in Afghanistan. Aside from tanks in motorized rifle units, the 40th Army also had three tank regiments fully equipped with T-62 tanks:
234th Tank Regiment
285th Tank Regiment
24th Guards Tank Regiment
In total, there were 39 tank battalions in Afghanistan in 1980. However, as the nature of the fighting became clear, tank regiments were withdrawn back to the USSR or were converted. In June 1980, the 234th Tank Regiment was withdrawn, and then in March 1984, the 285th Tank Regiment was transformed into the 682nd Motorized Rifle Regiment, and the total number of tank battalions was reduced to 17. In October 1986, the 24th Guards Tank Regiment was withdrawn, leaving no tank regiments left in Afghanistan. From then on, T-62 tanks served only in motorized rifle divisions. In 1980, it can be estimated that there were approximately 800 tanks in the 40th Army, and by 1989, there would have been no more than 560 tanks. The total number of losses amounted to 147 tanks, the majority of which were due to hull damage from mine and IED blasts.
T-62 Tank Losses in Afghanistan
Year
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
Total
Tank Losses
1
18
28
17
13
7
18
14
7
22
2
147
However, it is worth keeping in mind that there is conflicting data on the total number of irretrievable losses in Afghanistan. Data tabulated in a 1991 military science journal article states that 110 T-55 and T-62 tanks were destroyed in total. For tanks, mines and IEDs were the predominant cause of losses, accounting for 75% of damaged tanks, and most of the irretrievable losses were caused by mines or IEDs with a total charge mass greater than 12 kg TNT.
From the USSR to Russia
After the dissolution of the USSR, T-62 tanks were phased out at an accelerated pace, as the Conventional Armed Forces in Europe (CFE) Treaty, signed on 19 November 1990, mandated massive reductions in tanks to eliminate the overwhelming quantitative advantage that the Soviet Army had in conventional weapons. According to the data submitted by the USSR government during its signing of the CFE treaty, as of November 1990, the Soviet Army had 5,190 T-62 tanks of various modifications in Europe. Being the successor to the USSR, Russia took to downsizing its tank fleet, leading to thousands of T-62 being scrapped alongside the T-54, T-55, T-10, and other legacy tanks.
Chechen Wars
During the First Chechen War (1994-1996), a small number of T-62 tanks were used by Russian forces, mainly by the internal security troops (MVD). Some belonged to units based in the North Caucasus region, such as the 42nd Guards Motorized Rifle Division, which later became the permanent garrison force in Chechnya. The T-62 saw relatively little combat, playing only a minor role in the fighting leading up to the assault on Grozny in late 1994, where it was completely overshadowed by the T-72 and T-80.
During the Second Chechen War (1999-2000), the T-62 took a largely secondary role, mostly being deployed as static firing points.
Russo-Georgian War
By the time the Russian Army was called in to intervene in the conflict between Georgia and South Ossetia, the T-62 was largely out of the picture, although a small number of tanks still managed to see some combat in the hands of the MVD forces deployed to South Ossetia. No reliable data is available on the number of tanks deployed.
Ukrainian War
The T-62 recently regained its relevance in the ongoing war in Ukraine. Initially, T-62s began to be reactivated to arm the separatist troops of the so-called Donetsk People’s Republic and Luhansk People’s Republic, but owing to the massive tank losses suffered by the Russian Army, a call for tank replacements has led to the reactivation and upgrading of T-62 and T-62M tanks from long-term storage. Most of the tanks being reactivated are of the older T-62 model, as the T-62M was never particularly numerous, and some had already been sent to Syria as military aid.
Notable Service by Foreign Operators
Yom Kippur War
From a Western perspective, the most notable conflict where the T-62 was involved was the 1973 Arab-Israeli War, also known as the Yom Kippur War. The war took place in October 1973 and began with a joint Syrian-Egyptian invasion into the Sinai Peninsula and the Golan Heights with the intention of regaining these territories, previously lost during the Six-Day War in 1967. The USSR exported hundreds of T-62 tanks to Syria and Egypt to supplement their T-55 fleet, which formed the backbone of the Syrian tank forces. The war was closely studied by TRADOC, helping to establish a new non-nuclear combat doctrine for the U.S military, and thousands of subsequent US Army tankers were trained to recognize the T-62 as the archetypal Soviet medium tank. The precise number of losses suffered by the Syrian and Egyptian armies is unknown, but it is known from IDF Ordnance Corps records that no more than 132 tanks were captured intact.
Iran-Iraq War
The T-62 played a supplementary role on both sides, particularly the Iraqi Army, which had already had a fleet of over a thousand T-55 and Chinese Type 59 and Type 69 tanks. On the Iranian side, the batch of T-62 tanks it received from North Korea played a larger role due to the smaller overall size of its tank forces, but it was still overshadowed by the eclectic mix of foreign tank models operated by the Iranian Army, such as the M47 Patton, Chieftain, and Type 59. Despite the static fighting that characterized most of the war, both sides managed to carry out a number of large scale armored maneuvers, leading to some of the largest and most violent tank clashes of the period. An unknown number of tanks were lost.
Chadian-Libyan War
The Libyan Army was equipped with several hundred T-62 tanks during the timeframe of the nearly decade-long Chadian-Libyan War. The degree of involvement of the T-62 is unclear, although it is at least known that they formed the minority of the Libyan tank forces in Chad during the last phase of the conflict, known as the “Toyota War”, when united Chadian forces expelled an increasingly disorganized Libyan Army with the use of Toyota trucks armed with French-supplied MILAN missiles. There are even reports of a Libyan T-62 that was knocked out by one of these Chadian “technicals”. There is no reliable data and few accounts of the use of T-62s during the conflict.
Angolan War
The T-62 was used in the Battle of Cuito Cuanavale by the Cuban expeditionary forces deployed to the region to assist Angola.
No more than 364 tanks had been in use by the People’s Armed Forces for the Liberation of Angola (FAPLA), Cuba’s ally in the country, from 1980 to 1987. By early 1987, at the eve of the Battle of Cuito Cuanavale, FAPLA had around 500 tanks in total, composed of a half-half mix of T-62s and T-55s. FAPLA’s tank units were further reinforced after receiving Cuban military aid and training. Many of the tanks deployed to Cuito Cuanavale were lost to the National Union for the Total Independence of Angola (UNITA) through destruction or capture. Some of these tanks were then passed on to the South African Defence Force (SADF) for study and testing.
Gulf War
Despite the overall devastation of the Iran-Iraq War, the tank forces of the Iraqi Army had not been depleted significantly, as the leadership did not commit to a massive armored offensive to decisively end the conflict. As such, the Iraqi T-62 fleet was far from spent, although after 1980, the Iraqi leadership chose to continue expanding its army by importing nearly 3,000 Chinese tanks instead of relying on the USSR. By the start of the Gulf War, the T-62 had lost much of its prominence in the Iraqi Army, making up less than a sixth of its tank fleet, but nevertheless, it took part in the fight against Coalition forces in 1991. Its performance was practically indistinguishable from most of the other Iraqi tanks that took part, generally failing to make much of an impression against advancing Coalition ground forces.
Main Soviet Versions
During its service in the Soviet Army, the T-62 saw relatively few changes. Small modifications were introduced throughout the 1960s and 1970s, none of which were major enough to warrant a new designation. In 1981, the modernization of the T-62 was initiated alongside a parallel modernization project for the T-55, leading to the creation of the T-62M. It entered service in 1983, and spawned its own small family of sub-variants. A total of 785 tanks were officially upgraded to the T-62M standard.
The T-62M was equipped with the “Volna” fire-control system, featuring a KTD-2 laser rangefinder, BV-62 ballistic computer, TShSM-41U sight, and guided missile capability via the 1K13 sight, which was also a night sight. It could carry the 3UBK10-2 round with the 9M117 missile in its existing ammunition racks and fire it through the main gun, using the 1K13 sight to guide it. Its protection from ballistic threats was improved to the same level as the basic T-64A and T-72 with new metal-polymer composite armor on the turret and hull, while its mine protection was improved with a spaced steel belly plate underneath the nose of the hull. The tank also had a 902B “Tucha” smokescreening system with 8 smoke grenade launchers and it was outfitted with new anti-napalm measures. A new V-55U engine uprated to 620 hp allowed its driving characteristics to remain largely the same as a basic T-62. Additional upgrades included the addition of a thermal sleeve on the main gun barrel and the replacement of the R-113 or R-123 radio with new R-173.
T-62 – Basic version that evolved over time with small modifications. T-62K – Command tank version, with reduced ammunition load to accommodate an additional long-range radio, internal gasoline powered APU, and TNA-2 navigation system. T-62D – T-62 with the “Drozd” active protection system T-62M – Deep modernization of the T-62 with new metal-polymer composite armor blocks, sights, guided missiles, engine, radios, and mine protection T-62M1 – T-62M without the guided missile capability T-62M-1 – T-62M with an uprated engine T-62MV – T-62 with the modifications added in the T-62M modernization, but with Kontakt-1 ERA instead of metal-polymer armor
Foreign Operators
The T-62 was widely exported to the Middle East and non-Communist Third World countries for hard currency. The vast majority of tanks were second hand stock from Soviet Army units freed up by deliveries of new T-64A and T-72 tanks, with the exception of T-62 exports to Bulgaria, North Korea, and, most prominently, Egypt and Syria in the buildup to the 1973 Arab-Israeli War. The tanks for all of these export orders came directly off the UVZ production line. Bulgaria, Egypt and Syria were also the only two export customers for the T-62 in the 1960s, which is noteworthy since most of the T-62’s export success came in the 1970s.
Iraq, Libya, and Algeria were key customers for hard currency, and received large numbers of tanks in the second half of the 1970s. Egypt and Syria were the largest customers for T-62 tanks, and the two countries received the largest number of tanks in the period between 1965 to 1975, but only Syria maintained good enough relations with the USSR to continue sourcing additional tanks after the 1973 Arab-Israeli War. Small batches of tanks were also exported to North Yemen, South Yemen, and Ethiopia, and a batch of tanks was given to Vietnam in 1978 as military aid against the backdrop of the Cambodian-Vietnamese War. After initial export from the USSR, T-62 tanks were also circulated among its users through military aid.
Exports to North Korea began in 1971, and the country became a steady customer for T-62 tanks for the remainder of the decade. North Korea also became the sole production licensee in 1980. The T-62 left a strong design legacy in North Korea, visible in the country’s indigenous tank designs, such as the Ch’ŏnma-216. This might be credited to the difficulty of overhauling well-established technologies and ideas on tank design. Contrary to most online articles, T-62 production was never licensed to Czechoslovakia, and SIPRI data never firmly identified Czechoslovakian T-62 exports.
Additionally, the T-62 was also operated by a number of other nations as captured tanks. Israel operated a moderate number of T-62 tanks (no more than 132) as a result of capturing an enormous number of serviceable tanks and ammunition from Egyptian and Syrian forces during the 1973 war, and they later provided small batches of tanks to West Germany, South Korea (as the Tiran-6), and the USA for study, familiarization and training at armor schools. The US Army alone received around 20 tanks, and one company allegedly was kept in running condition for OPFOR training during the 1970s. Several other state and non-state actors have made use of captured T-62s. After the dissolution of the USSR, T-62 tanks were left on the territories of a handful of its constituent republics, where it continued to serve in a more limited capacity.
In The Warsaw Pact
Unlike the T-54 and T-55, the T-62 hardly served in Warsaw Pact nations, with Bulgaria being the sole adopter of the T-62 other than the USSR. The reason for this was tied to the circumstances in Poland and Czechoslovakia at the time, as they were not only the sole tank producing nations in the Warsaw Pact, but also had major responsibilities for arming the other members. Both nations evaluated the T-62 at some point, and both rejected it, choosing instead to obtain licences to upgrade their existing T-55 production lines for T-55A production.
The primary reason for the rejection of the T-62 was that it was considered to not be economically feasible to produce it, whereas the upgrade from the T-55 to the T-55A was straightforward. According to Czech author and defense expert Dr. Pavel Minařík, Czechoslovakia evaluated the T-62, but economic factors forced the country to skip one rearmament cycle, when in the mid-1970s, the possibility of obtaining a licence for T-72 production came up. A very similar explanation for the Polish rejection of the T-62 is often cited in various internet articles, although without traceable sources.
It is likely that the cost of retooling the Bumar-Łabędy factory in Poland and the ZŤS Martin factory in Czechoslovakia was the critical reason why it was deemed not economically feasible to procure a licence to produce the T-62. These factories had only recently begun T-55 production in 1964 and 1965 respectively, and were also building a variety of specialized vehicles based on the T-54. Owing to the differences in the hull, all of these vehicles would also have to be reworked if the T-62 was introduced. This was not the case in the USSR, as Factory No. 174 in Omsk was responsible for building specialized vehicles alongside regular tanks on its T-55 production line, leaving UVZ free to focus on T-62 production.
Interestingly enough, a high sale price is commonly cited as a second-hand explanation for the rejection of the T-62 among Warsaw Pact nations, but this would have been very odd given that the T-62 was a popular export item outside of the Warsaw Pact.
List of Foreign Operators
(Figures in brackets denote the year when orders were placed according to the SIPRI data. Inheritors of T-62 tanks after the dissolution of the USSR are marked accordingly.)
Asia
Mongolia (1973) – 250 tanks still in service
North Korea (1970) – 500 tanks imported from the USSR, unknown number still in service
Turkmenistan (ex-USSR) – 7 tanks in service
Vietnam (1978) – 200-220 tanks, unknown number still in service
Africa
Algeria (1977) – 300 tanks, all still in service as of 2017
Angola (1981) – 18 tanks still in service
Egypt (1971) – 500 tanks still in service
Eritrea (Unknown) – Small number of tanks donated by Ethiopia
Ethiopia (1977) – 100 tanks still in service
Libya (1973) – Unknown number of tanks in service in various paramilitary factions
North Yemen (1979) – 16 tanks in service
South Yemen (1979) – 270 tanks in service
Eurasia
Belarus (ex-USSR) – All tanks scrapped throughout the 1990s
Bulgaria (1969) – All tanks scrapped throughout the 1990s
Kazakhstan (ex-USSR) – 280 tanks, some T-62M tanks still in service
Russia (ex-USSR) – Unknown number in Far East storage, outside the purview of the CFE treaty
Tajikistan (ex-USSR) – 7 tanks still in service
Ukraine (ex-USSR) – 400 tanks inherited from the USSR, almost all scrapped, none in service
Uzbekistan (ex-USSR) – 170 tanks still in service as of 2017
Latin America
Cuba (1976) – 380 tanks still in service
Middle East
Afghanistan (1973) – Unknown number still in service under the Taliban government
Iraq (1974) – No longer in service, remaining numbers unknown
Syria (1981) – In service, unknown number of T-62M and T-62MV tanks received from Russia in 2019
Conclusion – A Tank Plagued by Myths
The T-62 could be best described as an exceedingly conventional tank that struck an outstanding balance of high performance in every metric that defined a classical medium tank. Although it was not without its shortcomings, many of which were connected to its obsolescent drivetrain, the design managed to avoid suffering from major deficiencies in any category. From an economical standpoint, it was a particularly successful tank design, fulfilling its intended role in staving off NATO tank technological superiority without the high production costs and mechanical troubles that dogged all of its counterparts except the Leopard 1. It was also viewed positively outside the Soviet Union. Contrary to the common belief that most countries did not see value in the T-62 compared to the T-55, the T-62 was a fairly popular choice in the export market during the mid to late 1970s, even with the T-72 soon becoming available in the early 1980s. In fact, surprisingly enough, a significant number of major T-62 export orders were placed in the immediate aftermath of the 1973 Arab-Israeli War, which had not covered the T-62 in glory as it had ended rather glumly for Egypt and Syria.
Overall, in the technical aspects of being a medium or main battle tank, it was very much like the Patton and M60 series, and quite unlike tanks like the Leopard, AMX-30, Panzer 61, and Chieftain, all of which were characterized by good or excellent performance in most regards but had one or more major technical shortcomings. However, this is not necessarily the case in the public eye, as those who have heard of the T-62 generally remember it for at least one of the many pervasive myths attached to it.
The most commonly cited shortcoming of the T-62 was that its rate of fire reached only 4-5 rounds per minute, ostensibly less than half the rate achieved by its Western counterparts. In fact, this was a nominal figure that merely defined the aimed rate of fire under simulated combat conditions, and the same aimed fire rate was achieved by the M60A1 and Strv 103B during comparative testing in the US. Moreover, there can be a great deal of variance in the fire rate of tanks from differences in the environment, degree of target concealment, rigidity in following procedure, and crew skill. In a Soviet parametric study of the factors involved in preparing for a shot on a target, it was found that a preparation time of up to 57 seconds was needed for a T-62 to fire a shot on the move at a concealed target or 38 seconds when firing from a standstill, whereas in a US Army study on the stabilized firing accuracy of a T-62, the average time for 3 aimed shots was 35 seconds. Both studies were equally valid, yet do not represent the qualities of the T-62 outside of the specific context in which they were carried out.
Another common belief is that spent casings would bounce around the turret and harm the crew after failing to exit the ejection port. Like many myths, this one arose from anecdotes from first hand accounts and was not without its own little kernel of truth, but repeated retellings and omissions from the story originally told by the US Army testers studying the T-62 meant that only the most amusing part stuck around in the public consciousness, while the rather mundane truth of the story was left behind. Major-Colonel James Warford recounts the story:
“I apologize for briefly telling this story again, but…when I first got on one of the US Army’s T-62s in 1978, I was told the story of the odd and somewhat dangerous “trigger” for the spent shell ejection system. When the tank arrived from Israel, the system’s trigger (a roughly cut triangular-shaped piece of metal) was laying loosely on the turret floor. When the tank was fired, the shell casings were ejected on to the closed ejection hatch or port…then bounced around the fighting compartment. It took awhile for someone to figure-out that the loose piece of metal was actually the trigger that operated the ejection hatch. Once it was put into place, the system worked well and reliably. To this day…I think it likely that someone in Israel may have removed the trigger as a practical joke for the Americans.”
That said, however, these myths brought with them a silver lining of their own. In a way, such peculiarities gave the T-62 a memorable personality, in contrast with its rather generic outward appearance. Nevertheless, in the end, its appearance might still have been the decisive reason why it has never enjoyed the same level of public attention – or perhaps notoriety – of its predecessors, the T-54 and T-55. Despite being the face of a quintessential Soviet tank to a generation of American tankers trained in the wake of the 1973 Arab-Israeli War, being as much of a synonym for a “Red” tank as a “Sagger” was for enemy anti-tank guided missiles, the T-62 is still often mistaken for a T-54/55 today. Although the resemblance and technical commonalities cannot be argued, it is ultimately a disservice to the T-62.
T-62 Specifications
Dimensions (L x W x H)
Hull dimensions:
6,630 x 3,300 x 2,395 mm
Total length with gun forward:
9,335 mm
Total length with gun rearward:
9,068 mm
On paved roads:
450 km
650 km (with fuel drums)
On dirt roads:
320 km
450 km (with fuel drums)
Sources
Танк Т-62: Руководство По Материальной Части И Эксплуатации, 1968
Танк Т-62M: Дополнение К Техническому Описанию И Инструкции По Эксплуатации Танка Т-62, 1987
TRADOC Bulletin No. 10: The Soviet Main Battle Tank
115-мм Танковая Пушка У-5ТС (2А20), 1970
115-мм Танковая Пушка У-5ТС: Альбом Рисунков, 1970
Руководство По Материальной Части И Эксплуатации Танка Т-55, 1969
Учебник сержанта танковых войск, 1989
C. С. Буров, Конструкция И Расчет Танков, 1973
Обитаемость Объектов Бронетанковой Техники, Ленинградский государственный технический университет, 1974
Танки 60-х: Боевые машины Уралвагонзавода
Карцев, Леонид Николаевич, Воспоминания Главного конструктора танков
Тагильская школа: 80 лет в авангарде мирового танкостроения
М.В Павлов, И.В Павлов, Отечественные бронированные машины 1945-1965 гг. Часть I: Легкие, средние и тяжелые танки
О. И. Алексеев, И. И. Терехин, Некоторые Вопросы Проектирования Защиты Стыка Корпуса И Башни
М. В. Верховецкий, В. В. Поликарпов, Из Опыта Совершенствования Основных Танков В Ходе Серийного Производства
Теория И Конструкция Танка, Том 10, Книга 2: Комплексная Защита
УКБТМ 75 лет тагильской школе танкостроения
Технология Автоматической Сварки Башни Танка Т-62 С Применением Флюса КМ-78А, Вестник Бронетанковой Техники, 1970 год, №5
С. В. Устьянцев, Е. Ю. Чернышева, 100 Лет Российского Танкостроения, Библиотека Танкпрома, 2020
Л. Г. Евсикова, А. В. Досужев, Дальность Узнавания Объектов Бтт, Вестник Бронетанковой Техники, 1973 год, №2
C. В. Устьянцев, Д. Г. Колмаков, Т-72/Т-90: Опыт создания отечественных основных боевых танков
Исследование Времени Подготовки Выстрела На Танках, Вестник Бронетанковой Техники, 1973 год, №4
Mittlerer KPz T 62 “Schutz Erprobung”, Juni 1975, Manuskript des Erprobungsberichtes 130-342 -75 E-VE
Оценка Боевой Эффективности И Технического Совершенства Вооружения И Военной Техники: Учебное Пособие, 1984
Ю. А. Гущин, Выбор Кумулятивных Снарядов Для Испытания Брони, Вестник Бронетанковой Техники, 1979 год, №3
Энциклопедия XXI век: Оружие и технологии России Том 7: Бронетанковое вооружение и техника, Издательский дом “Оружие и технологии”, 2003
Вооруженные Силы Империалистических Государств, 1964
Миф О Танке Т-62, захваченный китайцами во время конфликта на о. Даманский (http://otvaga2004.ru/tanki/v-boyah/mif-o-tanke/)
Martin Smisek, Czechoslovak Arms Exports to the Middle East Volume 1, Middle East @ War
SIPRI Arms Transfer Database, Trade Register (https://www.sipri.org/databases/armstransfers)
Amira Shahar, History of the Ordnance Corps (1967-1985): The Ordnance Corps as a Force Multiplier (https://www.himush.co.il/himush.co.il/originals/nisim11/hil-hacimos/toldot-hil-hcimos1967-1985.pdf)
Михаил Барятинский, Т-62: Убийца Центурионов и Олифантов, 2014
Т-62 Советский основной танк
Автоматизация Удаления Гильз Из Боевого Отделения Танка, Вестник Бронетанковой Техники, 1963, №4
А. Р. Заец, Бронетанковая техника в Афганистане (1979-1989): Часть 2, Военный комментатор, 2003, №1(5)
Československá armáda, Rubrika: Vaše dotazy, dotaz 694 (https://armada.vojenstvi.cz/vase-dotazy/47.htm)
Г. Е. Королев, Р. З. Мамлеёв, Исследование Боевых Повреждений Образцов Отечественной БТТ, Вестник Бронетанковой Техники, 1991 год, №8
Russian Federation (1996-1999)
Infantry Fighting Vehicle – At Least 2 Prototypes Built
The Soviet BMP-1 infantry fighting vehicle is a historically very significant vehicle, responsible for popularizing the IFV concept on a massive scale worldwide. The vehicle itself remains to this day the most produced infantry fighting vehicle in history, with about 40,000 produced in total in the Soviet Union and Czechoslovakia, not counting various copies which could bring up that number by several thousands.
This ubiquitous status of the BMP-1, as well as the vehicle fairly quickly becoming obsolete, has led to a number of upgrade packages being studied and offered. Post-Soviet collapse Russia, which inherited thousands of BMP-1s, was the source of several of these. Perhaps the most potent to this day was a version of the vehicle fitted with the Kliver TKB-799 turret designed by the KBP Instrument Design Bureau based in Tula, which has historically been the main designer and producer of Soviet aircraft and ground-based autocannons, as well as several anti-tank guided missiles (ATGMs) or self-propelled anti-aircraft gun (SPAAG) designs. This BMP-1 fitted with a modern turret was offered in the late 1990s, but would never be adopted by any user.
The IFV of the Soviet World: Brief Summary of the BMP-1
Generally considered to be the first modern infantry fighting vehicle, the BMP-1 was designed by the Chelyabinsk Tractor Plant in the early 1960s as the Object 765. It was adopted by the Red Army in 1965. Mass-production began under the name of BMP-1 in 1966.
The BMP-1 was a welded hull, amphibious armored fighting vehicle mounting a central one-man turret armed with the 2A28 Grom 73 mm low-pressure smoothbore gun and fed by an autoloader mechanism. The vehicle also featured a coaxial PKT 7.62 mm machine gun and a 9M14 Malyutka missile launcher mounted on top of the Grom’s barrel. To the rear, a troop compartment allowed the vehicle to transport 8 dismounts.
When first pushed into service in the late 1960s, the BMP-1 was a major addition to the Red Army’s arsenal, and despite the existence of some previous vehicles, such as the West German HS.30, it is often considered to be the first truly modern Infantry Fighting Vehicle (IFV) to be adopted in massive numbers. Nevertheless, it was for the Eastern Bloc at least. The vehicle could be used to support armored assaults in all types of terrains thanks to its amphibious capacities, and was notably able to carry a section of infantry even in heavily contaminated terrain, which would typically be expected after the use of NBC (Nuclear, Biological, Chemical) weapons. Support for accompanying tanks as well as dismounting infantry would be provided by a 73 mm Grom infantry support gun and a Malyutka missile launcher, with four missiles stored inside the vehicle. This was a considerable evolution in comparison to Armored Personnel Carriers (APCs), which typically mounted little more than a heavy machine gun. In the Soviet Union, production of the BMP-1 lasted until 1982, with more than 20,000 vehicles produced. Almost equally large quantities were manufactured in Czechoslovakia as the BVP-1, while India produced a number under license, and a number of countries would produce more or less identical copies (Type 86 in China, Boragh in Iran, Khatim in Sudan). Operated in massive numbers by the Soviet Army and widely exported, the BMP-1 became perhaps the most ubiquitous infantry fighting vehicle in the world, despite a more modern type, the BMP-2, entering service in the early 1980s.
Russian BMP-1s in a Post-Soviet World
After years of a decline that the best efforts of various Soviet leaders could not prevent, the Soviet Union finally collapsed in December 1991, after most of its Warsaw Pact allies had gone their own way in 1989 and various Soviet Republics started declaring their independence from 1991 onward.
Russia, the largest, most populated, and most industrialized Republic of the former union, inherited most of the Red Army’s armament. Although the most significant aspect of this would likely be exclusive control of the USSR’s tremendous nuclear arsenal, it would also manifest in tens of thousands of armored fighting vehicles produced and fielded during the Soviet years. This included massive numbers of BMP-1s, perhaps up to ten thousand. The BMP-1 was at this point already fairly obsolete, with its 73 mm Grom main gun notably proving fairly puny and anemic, with a short effective range and only limited armor-piercing or high-explosive potential provided from its small shells. While some Soviet efforts, such as the BMP-1P upgrade (notably replacing the old Malyutka ATGM by a more modern Konkurs or Fagot ATGM and adding Tucha smoke dischargers), had been applied to part of the fleet, it nonetheless remained obvious that the BMP-1 was antiquated. More modern options were already in existence. The BMP-2 was in large-scale service for around a decade by the time of the collapse of the USSR and was armed with a 30 mm autocannon, far more useful than the Grom. The new BMP-3, a recent addition to the Soviet arsenal when the USSR collapsed, provided both a 30 mm autocannon and a 100 mm gun firing high-explosive shells and ATGMs, overall proving to be a very modern option. As such, it would appear the BMP-1 could perhaps entirely have been relegated to reserve use as these new vehicles entered service.
The 1990s, however, quickly turned into a dreadful decade of economic collapse, widespread corruption, violence, and chaos for Russia, putting potential plans of a quick modernization of the army into disarray. The production of many high-end vehicles designed towards the later years of the Soviet Union, such as the T-72BU, which would be redesignated into the T-90, or the BMP-3, had to be slowed down or prioritized towards exports instead of domestic use, meaning old vehicles such as the BMP-1 proved to be longer-lived in Russian service. In these economically trying times, potential upgrades for Soviet vehicles used abroad could also potentially be a lucrative prospect for Russian design bureaus to try and exploit.
It was in this context that the KBP Instrument Design Bureau, based in Tula, around 200 km south of Moscow, would begin working on a turret design that could be fitted onto old Soviet armored personnel carriers and infantry fighting vehicles in order to bring them to a more modern standard firepower-wise. Tula was in a fairly decent position to study such a design, with the design bureau having extensive experience designing autocannons, ATGMs, and their mounting into armored fighting vehicles. Among Tula’s most famous designs was the turret for the advanced 2K22 Tunguska SPAAG, pretty much all Soviet widely-used autocannons designs, and ATGMs such as the Metis and Konkurs. In the field of ATGMs, Tula was notably working on a new, more modern system, which would become the Kornet. The turret design studied by Tula for older Soviet APC/IFVs would first be unveiled, in a model form, in 1996.
Turret – the TKB-799 “Kliver”
The turret designed by the KBP design bureau would be designated TKB-799 and be given the nickname “Kliver” (cleaver). The turret was first showcased in 1996. By this point, a functional turret had been manufactured but was mounted on a BTR-80. The BMP-1 equipped with the Kliver would first appear at IDEX 97 in Abu Dhabi. It appears at least two vehicles would be fitted with the turret for trials and marketing purposes.
The Kliver was a weapon station designed with its own turret basket. The BMP-1 appears to have been the main platform intended for the turret, even though the turret was first showcased on the BTR-80. As such, the Kliver was designed for the BMP’s 1,380 mm turret ring diameter and with a light weight of 1,500 kg and could be installed without modifying the hull. The turret was operated by a single crew member, sitting on the left side of the turret, with the armament somewhat offset to the left.
Armament – 30 mm 2A72
The main armament of the Kliver turret was the 30 mm 2A72 autocannon, a modified 2A42 autocannon. The cannon fired 30×165 mm ammunition and had a rate of fire of 350 to 400 rpm. The gun was belt-fed, and overall remarkably light, weighing only 84 kg. The barrel length of 2,416 mm took a significant part of the weapon’s weight, at 36 kg, and was typically thicker and more durable than most barrels for 30 mm autocannons.
A number of 30×165 mm shells were available for the 2A72. For use against light fortifications, infantry, soft-skinned vehicles, and other unarmored targets, the 2A72 could fire the 3UOF8 High-Explosive Incendiary (HE-I) shells. This shell had an explosive filling of 49 grams of A-IX-2, the standard Soviet explosive autocannon shell formula since 1943. The overall mass of the projectile was 390 g, and that of the whole cartridge 842 g. In high-explosive belts, it was complemented by the 3UOR6. This shell forsook most of the explosive charge, with only 11.5 g remaining, in order to mount a very large tracer. Fired at the same muzzle velocity of 980 m/s, it was used for fire correction purposes, though over large distances, the trajectory of the two shells differed. With a fuse lasting 9 to 14 seconds, the explosive shells would generally detonate after about 4 kilometers away if they did not meet a target, though autocannons were typically used effectively at much closer ranges. The rate of tracer to high-explosive rounds in a 30 mm belt tended to be 1:4.
For armor-piercing duties, two types of 30 mm shells existed. The older 3UBR6 was a fairly classic armor-piercing shell with a core of hardened structural steel. This steel core weighed 375 g, with the entire projectile weighing just 25 grams more, at 400 g, and the entire shell having a weight of 856 g. It featured a tracer that burned for 3.5 seconds after being fired and had a muzzle velocity of 970 m/s. Its penetration values against Rolled Homogeneous Armor (RHA) at an angle of 60° were 29 mm at 700 m, 18 mm at 1,000 m, and 14 mm at 1,500 m. These were fairly mediocre performances, able to defeat little more than light armored vehicles in the vast majority of cases.
A more modern armor-piercing shell existed in the form of the 3UBR8, an Armor Piercing Discarding Sabot (APDS) shell with a tracer. It featured a lighter 222 g piercing core of tungsten alloy. The projectile as a whole was 304 g and the cartridge 765 g. Fired at a muzzle velocity of 1,120 m/s, this shell seemed to penetrate, against similar RHA armor and at the same angle of 60°, 35 mm at 1,000 m, and 25 mm at 1,500 m. It offered much more promising performances than the older 3UBR6 against modern infantry fighting vehicles.
The TKB-799 offered some, at the time, very modern fire control systems for a Russian IFV, enhancing the capacities of this 2A72 autocannon. The Kliver turret offered an independent two-plane sight stabilization and a day/night sight in the form of a thermal imager, as well as a laser rangefinding device. The turret featured an automatic electromechanical firing system. It would provide sighting and ranging, as well as weapon laying including both lead, elevation, and traverse, which would provide better accuracy, particularly against moving targets. The turret was also designed to allow fairly generous elevation angles of -10º to +60°, which would allow for moderate anti-aircraft capacities, particularly against helicopters. In general, with the FCS provided by the turret, it was hoped the 2A72 would have an effective range of about 2 km in good, flat terrain. It appears 300 rounds of ammunition were provided for the 2A72. The weapon was slightly offset to the right but was still the most centrally mounted of all of Kliver’s weapon systems.
Secondary armament was provided in the form of a coaxial 7.62×54 mmR PKTM machine gun mounted to the right of the autocannon. This less crucial system is generally less documented in writings on the Kliver. It appears it was only provided with a limited ammunition supply of 200 rounds. Considering the capacities of the 2A72, there would be little reason to use the PKTM outside of enemy infantry in the open or some minimal suppression fire.
An Early Platform for the Kornet
In addition to the 2A72, the Kliver turret featured another crucial weapon system, this being Russia’s new anti-tank guided missile, also designed by the Tula design bureau, the 9M133 Kornet. This was a large caliber (152 mm) system. Work on it began a few years before the fall of the USSR, and it was first unveiled in 1994. In 1996, when it was showcased alongside the Kliver, it was still a new, cutting-edge system, which was yet to enter service in the Russian Army in a large scale.
The Kornet used semi-automatic beam-riding guidance, meaning the missile was aimed using a laser beam aimed at the target from the firing vehicle. The previous 9M113 Konkurs offered by Tula was, in comparison, a wire-guided semi-automatic command to line of sight (SACLOS) system, which required the firing vehicle to constantly maintain the target in line-of-sight in order to retain guidance. This more modern guidance system, in addition to the higher maximum speed of Kornet ATGMs (going from 250 to 300 m/s, depending on the missile, whereas Konkurs reached a maximum of around 200 m/s), makes the Kornet a safer and more accurate missile in general.
In addition to its superior guidance system and speed in comparison to older Soviet ATGMs, the Kornet also is of a larger caliber than most (being 152 mm, whereas the older Konkurs is 135 mm). This, in addition to more modern shaped charge designs and components, made it much more effective against armored fighting vehicles. By the time of the Kliver turret’s creation, the 9M133-1 missile was rated for around 1,100 to 1,200 mm Rolled Homogenous Armor (RHA) penetration on average, and the use of a tandem HEAT warhead reduced the protection offered by ERA against it. The large caliber of the Kornet also allowed for other uses than merely anti-tank. This manifested with the 9M133F-1 missile, which instead of an armor-piercing shaped charge, contains a thermobaric warhead, equivalent to 10 kg of TNT and provides significant incendiary effects. Both of these missiles have a maximum flight speed of 250 m/s and an effective range of 100 to 5,500 m.
On the Kliver, four Kornet pods were mounted, hanging to the right of the main turret body itself. It does not appear any reloads were provided with the vehicle, certainly not in the small turret. The potential of four Kornets was still fairly significant. The possibility to use either HEAT (High Explosive Anti-Tank) or thermobaric missiles also gave some considerable adaptability for the vehicle, allowing it to mount a complement of HEAT missiles if likely to face high-end enemy armor, or thermobaric missiles if facing an opponent unlikely to use heavy armor, but rather using well-fortified positions.
Marketing the BMP-1 Kliver
In the late 1990s, Tula appears to have embarked on a serious marketing campaign in order to attempt to sell its Kliver turret for either domestic or foreign BMP-1s. BMP-1 with Kliver turret prototypes were showcased on a number of occasions in Russia, but also abroad. Prototypes were notably present in the 1997 and 1999 IDEX (International Defence Exhibition) which took place in Abu Dhabi, in the United Arab Emirates. Designers made some quite bold claims about the capacities of their turret, which they claimed to be superior to not only the turrets used in the BMP-1 and BMP-2 but also to those used in the American Bradley and German Marder. Though they may seem somewhat extravagant, their claims were not necessarily far-off from the truth. The Kornet ATGM featured with the Kliver turret was a more modern system than the TOW or Milan featured on these Western IFVs, and the 30 mm 2A72 was also a fairly high-end autocannon.
However, this was only part of the picture. Tula remained mostly a weapon designer, not one of military vehicles and it failed to provide an upgrade of the BMP-1 hull alongside its Kliver turret. Tula’s upgraded BMP-1 may very well have provided equal or superior firepower to most modern Western IFVs, but it still had what was essentially a 1960s hull. Problems with the BMP-1 platform had long been identified: it was notoriously cramped, even for soldiers of fairly moderate size, and featured a number of redundant features, such as nearly useless firing ports. The armor was almost symbolic, incapable of providing protection from anything above small arms and shrapnel. And, mechanically, many vehicles, even including Soviet refurbishment programs, would still be used and exhausted after decades of use.
Conclusion – The Future of BMP-1 Upgrades
It should not come as much of a surprise that, despite all its promises, the Kliver TKB-799 turret upgrade for the BMP-1 would never see any adoption. Outside of this obsolete hull, the new turret, while capable, would also likely be too expensive for a still cash-strapped Russia, due to its inclusion of many modern systems. One can see, for example, how, all the way to this day, the Kornet is yet to fully replace the Konkurs or Fagot, and as recently as 2022, most BMP-2s and BMD-2s spotted in the Russian invasion of Ukraine are still equipped with the old ATGMs, with the BMP-2M Berezhok modernization seemingly absent from the frontlines. One may still note how, at the same time as the Kliver turret was still being marketed, many Russian soldiers and conscripts would be faced with the failures of unupgraded BMP-1s to provide meaningful fire support in an urban environment during the bloody episode of the 1999-2000 Second Chechen War. Despite all the drawbacks of the old platform, a BMP-1 with Kliver turret would almost certainly have proved a more useful asset than one still featuring the Grom in this conflict, as well as others Russia has gotten involved in the last two decades.
The Kliver turret would be far from the only upgrade which would be proposed for the BMP-1. In a similar timeframe, another proposal from Russia which reached prototype stage and used already produced components would be to simply fit the turret of the BMD-2, which featured a 2A42 30 mm autocannon and a 9K11 Fagot ATGM, to the BMP-1. Though using less advanced weapon systems than the Kliver, it would still improve the capacities of the BMP-1 and likely be a lot cheaper, but like the Kliver, it was not met with any orders. In the early 2000s, Ukraine offered the BMP-1U, which featured the Shkval turret, fairly similar to the Kliver in design, though it used weapon systems available to Ukraine, such as the 30 mm KBA–2 autocannon and the Konkurs. It would actually prove more successful than the Kliver, with Ukrainian BMP-1Us being sold abroad to Chad, Georgia, where 15 would be captured by Russia in 2008, and Turkmenistan. Ukraine continued to develop their offering of BMP-1s armed with their turret during the 2010s in the form of the BMP-1M and BMP-1UM, the later featuring a major hull redesign, which the TKB-799-equipped BMP-1 lacked so much.
In more recent years, Russia has finally carried out a BMP-1 modernization project, though it would be on a much more limited scale, with the BMP-1AM, which was revealed in 2018 and saw a small upgrading run, 35 vehicles being operated for units operating the BMP-1 in eastern Russia. The BMP-1AM is in many ways inferior to the Kliver, mounting the BPPU turret of the BTR-80A and BTR-82, which only features the 2A72 30 mm autocannon and a coaxial PKTM. All ATGM capacities in such a vehicle are relegated to a Metis-M launcher not mounted on the vehicle itself, but to be operated by the dismounts, outside of the vehicle, a far cry from the four integrated Kornets of the Kliver turret.
While many would have thought the BMP-1 would no longer be an asset in the Russian Army by this point, the Russian invasion of Ukraine, launched on February 24th, 2022, would prove the contrary. Small numbers of Russian BMP-1s were seen turning up abandoned or destroyed, including outside of sectors where Ukrainian separatists operate, albeit in smaller numbers than the BMP-2s and BMD-2s which have been lost in an order of magnitude greater number. While the situation of the Russian invasion of Ukraine certainly is not tied simply to the quality of Russian vehicles, one can imagine how a BMP-1 with a Kliver turret would prove a far more useful asset in a modern conflict in comparison to one still fitted with the antiquated and anemic 73 mm Grom.
BMP-1 with Kliver TKB-799 turret Specifications
Dimensions (l-w), m
6.735 – 3.150
Weight
~ 14 metric tonnes
Road clearance, mm
420
Engine
UTD-20 6-cylinder 4-stroke V-shaped airless-injection water-cooled diesel (300 hp at 2,600 rpm)
Russian Federation (1997)
Infantry Fighting Vehicle – 1 Prototype Built
The Soviet BMP-1 infantry fighting vehicle is a historically very significant vehicle, responsible for popularizing the IFV concept on a massive scale worldwide. The vehicle itself remains to this day the most produced infantry fighting vehicle in history, with about 40,000 produced in total in the Soviet Union and Czechoslovakia, not counting various copies which could bring up that number by several thousands.
This ubiquitous status of the BMP-1, as well as the vehicle being long obsolete has led to a number of upgrade packages being studied and offered. Post-Soviet collapse Russia, which inherited thousands of BMP-1s, was the source of several of these. Likely the simplest to undertake, yet a still non-negligible upgrade, was created by mating the BMP-1 hull with a turret from the BMD-2 airborne IFV. The resulting vehicle was the BMP-1-30.
The IFV of the Soviet World: Brief Summary of the BMP-1
Generally considered to be the first modern infantry fighting vehicle, the BMP-1 was designed by the Chelyabinsk Tractor Plant in the early 1960s as the Object 765. It was adopted by the Red Army in 1965. Mass-production began under the name of BMP-1 in 1966.
The BMP-1 was a welded hull, amphibious armored fighting vehicle mounting a central one-man turret armed with the 2A28 Grom 73 mm low-pressure smoothbore gun and fed by an autoloader mechanism. The vehicle also featured a coaxial PKT 7.62 mm machine gun and a 9M14 Malyutka missile launcher mounted on top of the Grom’s barrel. To the rear, a troop compartment allowed the vehicle to transport 8 dismounts.
When first pushed into service in the late 1960s, the BMP-1 was a major addition to the Red Army’s arsenal, and despite the existence of some previous vehicles, such as the West German HS.30, it is often considered to be the first truly modern Infantry Fighting Vehicle (IFV) to be adopted in massive numbers. Nevertheless, it was for the Eastern Bloc at least. The vehicle could be used to support armored assaults in all types of terrains thanks to its amphibious capacities, and was notably able to carry a section of infantry even in heavily contaminated terrain, which would typically be expected after the use of NBC (Nuclear, Biological, Chemical) weapons. Support for accompanying tanks as well as dismounting infantry would be provided by a 73 mm Grom infantry support gun and a Malyutka missile launcher, with four missiles stored inside the vehicle. This was a considerable evolution in comparison to Armored Personnel Carriers (APCs), which typically mounted little more than a heavy machine gun. In the Soviet Union, production of the BMP-1 lasted until 1982, with more than 20,000 vehicles produced. Almost equally large quantities were manufactured in Czechoslovakia as the BVP-1, while India produced a number under license, and a number of countries would produce more or less identical copies (Type 86 in China, Boragh in Iran, Khatim in Sudan). Operated in massive numbers by the Soviet Army and widely exported, the BMP-1 became perhaps the most ubiquitous infantry fighting vehicle in the world, despite a more modern type, the BMP-2, entering service in the early 1980s.
Russians BMP-1s in a Post-Soviet World
After years of a decline that the best efforts of various Soviet leaders could not prevent, the Soviet Union finally collapsed in December 1991, after most of its Warsaw Pact allies had gone their own way in 1989 and various Soviet Republics started declaring their independence from 1991 onward.
Russia, the largest, most populated, and most industrialized Republic of the former union, inherited most of the Red Army’s armament. Although the most significant aspect of this would likely be exclusive control of the USSR’s tremendous nuclear arsenal, it would also manifest in tens of thousands of armored fighting vehicles produced and fielded during the Soviet years. This included massive numbers of BMP-1s, perhaps up to ten thousand. The BMP-1 was at this point already fairly obsolete, with its 73 mm Grom main gun notably proving fairly puny and anemic, with a short effective range and only limited armor-piercing or high-explosive potential provided from its small shells. While some Soviet efforts, such as the BMP-1P upgrade (notably replacing the old Malyutka ATGM by a more modern Konkurs or Fagot ATGM and adding Tucha smoke dischargers), had been applied to part of the fleet, it nonetheless remained obvious that the BMP-1 was antiquated. More modern options were already in existence. The BMP-2 was in large-scale service for around a decade by the time of the collapse of the USSR and was armed with a 30 mm autocannon, far more useful than the Grom. The new BMP-3, a recent addition to the Soviet arsenal when the USSR collapsed, provided both a 30 mm autocannon and a 100 mm gun firing high-explosive shells and ATGMs, overall proving to be a very modern option. As such, it would appear the BMP-1 could perhaps entirely have been relegated to reserve use as these new vehicles entered service.
The 1990s, however, quickly turned into a dreadful decade of economic collapse, widespread corruption, violence, and chaos for Russia, putting potential plans of a quick modernization of the army into disarray. The production of many high-end vehicles designed towards the later years of the Soviet Union, such as the T-72BU, which would be redesignated into the T-90, or the BMP-3, had to be slowed down or prioritized towards exports instead of domestic use, meaning old vehicles such as the BMP-1 proved to be longer-lived in Russian service. In these economically trying times, potential upgrades for Soviet vehicles used abroad could also potentially be a lucrative prospect for Russian design bureaus to try and exploit. At the same time, the Russian Army was desperately cash-strapped, so an affordable upgrade could have had some potential.
The BMP-1-30
The BMP-1-30 appears to date from 1997. It is not associated with any single design bureau, and considering how its creation may have been a very easy affair, it is possible it was simply a creation of the Russian Army.
Replacing the Grom main armament has been the focus of many of the more extensive BMP-1 upgrades which have been created. For this, many different solutions have been studied. For example, in the same period as the BMP-1-30 was created, the city of Tula’s KBP Instrument Design Bureau offered a BMP-1 refitted with a new turret, armed with a powerful 30 mm 2A72 autocannon as well as new Kornet ATGMs. However, one would not necessarily need to create a new turret to improve upon the BMP-1.
By the 1990s, a number of new IFVs had appeared. Among them was the BMD-2, the second in the BMD line of airborne infantry fighting vehicles. The first BMD, the BMD-1, featured the same turret and armament as the BMP-1. However, when the USSR moved from Grom-armed to 30 mm-armed IFVs, turret commonality could no longer be achieved between the BMP and BMD, as the new BMP-2 introduced a two-man turret with a larger turret ring. Another turret was thus designed for the BMD-2, which used the same 2A42 autocannon and 9P135 ATGM launcher as the BMP-2 but was smaller, retaining only one crewmember and, crucially, the same 1,380 mm turret ring as the turret of the BMP-1 and BMD-1. In the context of the 1990s, this suddenly made the BMD-2’s turret a really suitable turret in order to upgrade BMP-1s, as it featured superior armament while having the same turret ring diameter, greatly simplifying the refit process.
The B-30 Turret
The B-30 turret which outfitted the BMP-1-30 was a small, one-man turret with a 1,380 mm turret ring.
The cylindrical turret has a higher volume than the BMP-1’s, and as such, the gunner could be said to be slightly less cramped. However, internal space is still limited and the turret can be judged to be very uncomfortable by the standards of Western IFVs. The seat of the gunner is slightly offset to the left of the turret, while the main gun is slightly offset to the right. Two periscopes are present in a bulge on the left side of the turret, while two others are to the right of the hatch, mounted on the main turret body. These periscopes are of the TNPO-160 type, which provide a 78° horizontal and 28° vertical field of view. The gun sights are mounted to the front, and include a main day/night sight and a secondary high-elevation sight mostly used to target aircraft. Overall, visibility is considered to be good for the gunner, typically superior to the BMP-1 turret, making the issues of a one-man turret slightly less pronounced.
The 30 mm 2A42
The main armament of the B-30 turret is the 30 mm 2A42 autocannon. This is a widely used gun, also used on the BMP-2, but also modern Soviet combat helicopters, such as the Mi-28 and Kamov Ka-50 and Ka-52.
The 2A42 fires the Soviet 30×165 mm cartridge. It uses a dual-feed system. There is a digital display showing the number of shells still available in the turret, as well as a switch allowing for a quick change in the type of ammunition fired. The weapon features a 2,416 mm barrel, fitted with a double-baffle muzzle brake. The autocannon has two dedicated fire rates, a slow one at 200 rpm and a quicker one at 550 rpm. During sustained fire, the rate of fire can reach higher values. The turret allows for a very high elevation of +60° which, coupled with a dedicated high-elevation sight, makes the 2A42 a more dangerous threat for helicopters than what would be expected from a ground vehicle.
A number of 30×165 mm shells are available for the 2A42. The total number of shells carried inside the BMD-2 turret is 300. If enough work was put into it, it is likely the larger hull of the BMP could allow for higher ammunition stowage.
For use against light fortifications, infantry, soft-skinned vehicles, and other unarmored targets, the 2A42 can fire the 3UOF8 High-Explosive Incendiary (HE-I) shells. This shell has an explosive filling of 49 grams of A-IX-2, the standard Soviet explosive autocannon shell formula since 1943. The overall mass of the projectile is 390 g, and that of the whole cartridge 842 g. In high-explosive belts, it is complemented by the 3UOR6. This shell forsakes most of the explosive charge, with only 11.5 g remaining, to mount a very large tracer. Fired at the same muzzle velocity of 980 m/s, it is used for fire correction purposes, though over large distances, the trajectory of the two shells may begin to differ. With a fuse lasting 9 to 14 seconds, the explosive shells will generally detonate after about 4 km if they have not met a target, though autocannons are typically used effectively at much closer ranges. The rate of tracer to high-explosive rounds in a 30 mm belt tends to be 1:4.
For armor-piercing duties, two types of 30 mm shells exist. The older 3UBR6 is a fairly classic armor-piercing shell with a core of hardened structural steel. This steel core weighs 375 g, with the entire projectile weighing just 25 g more, at 400 g, and the entire shell weighs 856 g. It features a tracer that burns for 3.5 seconds after being fired, and has a muzzle velocity of 970 m/s. Its penetration values against Rolled Homogeneous Armor (RHA) at an angle of 60° are 29 mm at 700 m, 18 mm at 1,000 m, and 14 mm at 1,500 m. These are fairly mediocre performances, able to defeat little more than light armored vehicles in the vast majority of cases.
A more modern armor-piercing shell exists in the form of the 3UBR8, an Armor Piercing Discarding Sabot (APDS) shell with a tracer. It features a lighter 222 g piercing core of tungsten alloy. The projectile as a whole is 304 g, and the cartridge 765 g. Fired at a muzzle velocity of 1,120 m/s, this shell seems to penetrate, against similar RHA armor and at the same angle of 60°, 35 mm at 1,000 m and 25 mm at 1,500 m. It offers much more suitable performances than the older 3UBR6 against modern infantry fighting vehicles.
The 2A42 is supplemented by a coaxial 7.62×54 mmR PKTM machine gun. In this particular regard, the B-30 turret is actually worse than the one of the BMD-1 and BMP-1. Both of these use the same machine gun, however, it is fed from a single 2,000 rounds box, making reloading a non-issue for the gunner in most combat situations, a welcome reduction of tasks in a one-man turret. The B-30 turret uses more moderately sized 250 round belts which need to be reloaded a lot more often.
The 9P135 Launcher
The BMD-2 turret is fitted with a 9P135 missile launcher mounted to the right of the turret, fairly high so as not to interfere with the vision from periscopes or sights.
The 9P135 launcher was designed to fire the 135 mm 9K113 Konkurs but is also compatible with the smaller 120 mm 9K111 Fagot, which eases logistical work and adds versatility. The more powerful Konkurs is typically the preferred missile, but in case it cannot be supplied, the smaller Fagot, widely used by infantry, can be used instead. The 9M113 missile is 1.17 m long and has an average speed of slightly above 200 m/s, though it can peak at around 300 m/s. The original missile is fitted with a single 2.7 kg shaped charge warhead which can grant armor penetration of 750 to 800 mm of Rolled Homogenous Armor on average.
In 1991, before the BMP-1-30 was created, a more modern version of the Konkurs, the 9M113M, was unveiled. It focused on improving performances against ERA by adding a secondary charge triggered by a standoff probe, designed to trigger ERA and reduce its effectiveness against the main shaped charge. Besides improved performance against ERA, the 9M113M’s performances are similar to the 9M113. Both missiles have an effective range of about 4km.
The 9M111 missile is smaller (120 mm) and shorter (86.3 cm) with a slower average (186 m/s) and maximum (240 m/s) speed. It features a slightly smaller explosive charge than the 9M113, of 2.5 kg, and is rated only for 400 mm of penetration against RHA, and has a shorter effective range of around 2 km.
By the 1990s, two upgraded Fagot missiles were available. The first, the 9M111-2 was longer (910 mm) and rated for a slightly superior armor penetration (460 mm), and also features a more sustained motor allowing for an improved effective range of up to 2.5 km. The last missile, the 9M111M Faktoriya, highly improved on the armor-piercing performances of the Fagot by adding a tandem warhead. Thanks to this feature, the missile could be expected to defeat ERA and still pierce 600 mm of RHA.
The 9P135 was pintle-mounted on the B-30 turret. The 9P135 sight has a magnification power of 10x, improving on the accuracy of the missile. They are wire-guided semi-automatic command to line of sight (SACLOS) systems, which require the gunner to constantly maintain the target in line-of-sight in order to retain guidance.
One of the main drawbacks of the missile’s mounting into the turret is that it could only be fired by an exposed crew member (the gunner), which would make them much more vulnerable to firearms and shrapnel.
The Malyutka missile first featured in the BMP-1 and BMD-1 could be fired from inside the turret, but the P upgrade, which was applied to both vehicles, replaced these with the 9P135 as well. In this manner, this issue of the B-30 turret was shared by BMP-1Ps with the same armament anyway. There were also some advantages to this mounting. Thanks to being very high, it could fairly easily be made to be the only element of the vehicle reaching over an obstacle when being fired, which would make the BMP-1-30 drastically less vulnerable when firing its missile. This complete external mounting also made the missile easy to remove. Three missiles were stored behind the gunner’s seat in the B-30 turret. It is unknown if more would be stored within the BMP-1 hull.
An Unchanged Hull
While the BMP-1-30 received a new turret, it appears its hull was completely or at least mostly unchanged. This is perhaps not as tragic as for the turret. There are less antiquated features of the BMP-1 hull that can easily be replaced or upgraded. It can still be said that the BMP-1 is a very cramped vehicle, for the crew and even more so for the infantry dismounts it transports. However, solving this issue can only really be achieved by a deep rework of the vehicle, far beyond the scope of most upgrade programs. An example of an attempt at solving this issue is the mid-2010s BMP-1UM offered by Ukraine.
The Capacities of the BMP-1-30
There is little argument that the BMP-1-30 can be considered superior to the average Russian BMP-1. In comparison to the BMP-1P, used by the Russian Army in the 1990s, the BMP-1-30 operated the same ATGM system in the same fashion, and in combat, the real difference would be the 30 mm 2A42 replacing the Grom. There is little argument that the 30 mm is superior. While the Grom technically has higher armor penetration, it is still outdated and highly inferior to the Konkurs in this matter. On the other hand, the anemic system has a far lower effective range than the 2A42, making the 30 mm autocannon generally a far better system against vehicles with moderate armor protection, such as APCs, IFVs, and occasionally, some older tank types. The autocannon is also far better as a weapon to suppress enemy positions.
Though the 2A72 autocannon essentially had the same performance as the 2A42 but with a lower maximum rate of fire (due to issues with the recoil of the 2A42 at the quickest rate of fire, the 2A72 used a lowered one as well as a new long-recoil system), the 9M133 Kornet ATGMs were superior in essentially every way to the Konkurs and Fagot. They were faster, carried more explosives, giving them more armor-piercing power, and crucially, used a more advanced beam-riding laser guidance, which allowed the gunner to fire them while remaining inside of the vehicle. The Kornet launcher could also fire missiles with thermobaric warheads, meaning the vehicle could be configured to be more lethal against infantry and fortified position if no armored opposition is expected.
While, armament-wise, the BMP-1 with Kliver could be argued to be cutting edge by the 1990s, the BMP-1-30 was way more average. The vehicle’s capacities could essentially be described as that of a budget BMP-2. Featuring the exact same weapon systems, but slightly less potent in using them due to having a single crew member in the turret instead of two.
However, while the BMP-1-30 was not cutting edge, it had one decisive advantage. It was still a notable improvement over the BMP-1 while using only readily available components and being an incredibly easy upgrade to undertake. There was no costly development, or introduction of any new system not already in supply chains. Everything used in the BMP-1-30 was introduced in the Soviet Army at the lastest in the early 1980s. In a way, it can even be said to be surprising that the idea emerged as late as 1997, when it could have been thought off more than fifteen years earlier already. The only factor in upgrading BMP-1s to BMP-1-30s would have been to produce more BMD-2 turrets essentially.
Conclusion – A Sensible Upgrade, Which Was Never Applied
Despite its general obsolescence, however, the BMP-1 is yet to entirely disappear from the Russian Army, even those still armed with a Grom. As late as the 2022 invasion of Ukraine, alongside large numbers of BMP-2s and BMD-2s, seemingly forming the workhouse of Russian’s IFV fleet and of combat capacities similar to the BMP-1-30, a number of BMP-1s have appeared. These have not just been seen in sectors where separatists operate, but also in parts of Ukraine, like Chernihiv, where only the Russian Army is active. Both BMP-1AMs and, in larger numbers, BMP-1s still using the 73 mm Grom, have been spotted. These are definitely outdated vehicles and while they may not fare particularly well even with the upgrades of the BMP-1-30, it would still be preferable for them to operate on a vehicle with a more modern autocannon, if not one with outright powerful missiles like the BMP-1 with Kliver TKB-99 turret. In a war where even BMD-2s and BMP-2s are being lost in the dozens, and some more advanced BMP-3s and BMD-4Ms are still fairly often knocked out or captured, an antiquated, Grom-armed BMP-1 hardly has a place at all.
BMP-1-30 specifications
Dimensions (l-w), m
6.735 – 3.150
Weight
~14 metric tonnes
Road clearance, mm
420
Engine
UTD-20S1 6-cylinder 4-stroke V-shaped airless-injection water-cooled diesel (300 hp at 2,600 rpm)
Suspension
Torsion bars
Maximum speed, km/h (road)
65
Maximum speed, km/h (water)
~7-8
Operationnal Range
~550 km (road)
Fuel capacity
420 l
Crew
3 (Commander, gunner, driver)
Dismounts
8
Radio
R-123M
Main armament
30 mm 2A42 autocannon
9P1235 ATGM launcher (3 missiles at least)
Solyankin, Pavlov, Pavlov, Zheltov. Otechestvennye boevye mashiny vol. 3
73-мм ГЛАДКОСТВОЛЬНОЕ ОРУДИЕ 2A28Техническое описание и инструкция по эксплуатации (73-mm SMOOTHBORE WEAPON 2A28 Technical description and operating instructions)
БОЕВАЯ МАШИНА ПЕХОТЫ БМП-1 ТЕхничЕскоЕ ОПИсаниЕ И ИНСТРУКЦИЯ ПО ЭКСПЛУАТАЦИИ (COMBAT VEHICLE INFANTRY BMP-1 Technical Description AND THE OPERATING INSTRUCTIONS)
The Russian Federation is the largest and most powerful out of all the successor states of the Soviet Union. Because of this status, it inherited most of the very large fleet of armored vehicles which the Soviet Army had during the Cold War in case of a potential war against NATO and its allies. Several tens of thousands of vehicles, many of them obsolete, ended up in the hands of the Russian Federation’s Troops, with the Soviet Army’s equipment being majoritarily passed on to Russia. Upgrades have been applied to many to try and keep them relevant in modern warfare; a recent example of these upgraded Cold War vehicles is the BMP-1AM.
The BMP-1 Infantry Fighting Vehicle (IFV) is a very common vehicle in this large fleet and surplus of ex-Soviet armor. Generally considered to be the first modern infantry fighting vehicle, the BMP-1 was designed by Chelyabinsk Tractor Plant in the early 1960s, named Object 765 and later evolving into the Object 764, adopted by the Red Army in 1965. Mass-production began under the name of BMP-1 in 1966.
The BMP-1 was a welded hull, amphibious armored fighting vehicle mounting a central one-man turret armed with the 2A28 Grom 73 mm low-pressure smoothbore gun and fed by an autoloader mechanism. The vehicle also featured a coaxial PKT 7.62 mm machine gun and a 9M14 Malyutka missile launcher mounted on top of the Grom’s barrel. To the rear, a troop compartment allowed the vehicle to transport 8 dismounts.
When first pushed into service in the late 1960s, the BMP-1 was a major addition to the Red Army’s Arsenal, and despite the existence of some previous vehicles such as the West German HS.30 it is often considered to be the first truly modern Infantry Fighting Vehicle (IFV) to be adopted in massive numbers – it at least was for the Eastern Block.
The vehicle could be used to support armored assault in all types of terrains, thanks to its amphibious capacities, and was notably able to carry a section of infantry even in heavily contaminated terrain which would typically be expected after the use of NBC (Nuclear, Biological, Chemical) weapons. Support for accompanying tanks as well as dismounting infantry would be provided by a 73mm Grom infantry support gun and a Malyutka missile launcher, with four missiles stored into the vehicle, against armored vehicles. This was a considerable evolution in comparison to Armored Personnel Carriers (APCs), which typically mounted little more than a heavy machine gun.
In the Soviet Union, production of the BMP-1 lasted until 1982, with more than 20,000 vehicles produced. Almost equally large quantities were manufactured in Czechoslovakia as the BVP-1, while India produced a number under licence, and a number of countries would produce more or less identical copies (Type 86 in China, Boragh in Iran, Khatim in Sudan). Operated in massive numbers by the Soviet Army and widely exported, the BMP-1 became perhaps the most ubiquitous infantry fighting vehicle in the world, despite a more modern type (the BMP-2) entering service in the early 1980s.
With the fall of the Soviet Union in 1991, large numbers of BMP-1s ended in the hands of the new Russian Federation, but the large production run of the BMP-2, as well as the newly-produced and vastly more modern BMP-3, meant that the BMP-1 has progressively declined in the active Russian arsenal. By around 2018, most estimates placed the number of active BMP-1s at around 300 to 500 vehicles in a few motorized riflemen units, though these were also supplemented by a number of other BMP-1-based vehicles such as the BRM-1K reconnaissance vehicle. However, very large numbers of the type were sitting in reserve – around 7,000 according to some estimates.
While the point of modernizing the BMP-1 in Russia may still appear somewhat inexistant, due to the large numbers of BMP-2s already in service and undergoing a modernization process, as well as the presence of the BMP-3 and the development of the Kurganets-25, the possibility of exports is likely a motivating factor in the development of a modernization of the BMP-1. More than forty countries still operate the vehicle, including some such as India, Kazakhstan, or Egypt, who remain loyal customers of the Russian military-industrial complex and operate large fleets of the vehicle.
The Prospect of Modernizing the BMP-1
During its service and production, the BMP-1 went through a number of upgrades and new production standards. For example, in the 1970s, the BMP-1P appeared, which notably replaced the old Malyutka ATGM witha Konkurs, as well as adding a number of changes, taking lessons from experience in the Vietnam War (for example a new fire-extinguishing system in order to protect the vehicle from napalm, and new smoke dischargers)
The BMP-1AM is a later project. It was developed by a bureau of the large military conglomerate that is Uralvagonzavod, or simply UVZ. The first traces of a modernized BMP-1 by UVZ appeared in a report from April 2018. The vehicle would be presented in Russia’s annual military-industrial show-off, the International Military and Technical Forum ARMY, in its 2018 edition, taking place in August.
The General Design of the BMP-1AM
The upgraded vehicle which rolled out in August 2018 was far from being entirely unknown and new. Instead, it would be much better described as a mostly unchanged BMP-1 hull fitted with an already existing turret in order to enhance its firepower.
A BMP with a BTR’s Armament
The core change that differentiates the BMP-1AM from a regular BMP-1 is a replacement of the BMP-1’s one-man turret fitted with an autoloader and armed with the 73 mm Grom by the weapon station featured in the Russian BTR-82A armored personnel carrier – itself an improved version of the BTR-80A’s weapon station. This station is remotely controlled by the gunner sitting in the hull of the vehicle.
The main armament of this new turret or ‘unified combat module’ is the 30 mm 2A72 autocannon (a modified 2A42 autocannon). The cannon fires 30×165 mm ammunition. and has a rate of fire of 350 to 400 rpm. The gun is belt-fed, and overall remarkably light, weighing only 84 kg. barrel length of 2,416 mm, takes a significant part of the weapon’s weight, at 36 kg, and is typically thicker and more durable than most barrels for 30 mm autocannons.
A number of 30×165 mm shells are available for the 2A72. For use against light fortifications, infantry, soft-skinned vehicles, and other unarmored targets, the 2A72 can fire the 3UOF8 High-Explosive Incendiary (HE-I) shells. This shell has an explosive filling of 49 grams of A-IX-2, the standard Soviet explosive autocannon shell formula since 1943. The overall mass of the projectile is 390 g, and that of the whole cartridge 842 g. In high-explosive belts, it is complemented by the 3UOR6. This shell forsakes most of the explosive charge, with only 11.5 g remaining, to mount a very large tracer. Fired at the same muzzle velocity of 980 m/s, it is used for fire correction purposes, though over large distances, the trajectory of the two shells may begin to differ. With a fuse lasting 9 to 14 seconds, the explosive shells will generally detonate after about 4 kilometers if they have not met a target, though autocannons are typically used effectively at much closer ranges. The rate of tracer to high-explosive rounds in a 30 mm belt tends to be of 1:4.
For armor-piercing duties, two types of 30 mm shells exist. The older 3UBR6 is a fairly classic armor-piercing shell with a core of hardened structural steel. This steel core weighs 375 g, with the entire projectile weighing just 25 grams more, at 400 g, and the entire shell having a weight of 856 g. It features a tracer that burns for 3.5 seconds after being fired, and has a muzzle velocity of 970 m/s. Its penetration values against Rolled Homogeneous Armor (RHA) at an angle of 60° are 29 mm at 700 m, 18 mm at 1,000 m and 14 mm at 1,500 m. These are fairly mediocre performances, able to defeat little more than light armored vehicles in the vast majority of cases.
A more modern armor-piercing shell exists in the form of the 3UBR8, an Armor Piercing Discarding Sabot (APDS) shell with a tracer. It features a lighter 222 g piercing core of tungsten alloy. The projectile as a whole is 304 g, and the cartridge 765 g. Fired at a muzzle velocity of 1,120 m/s, this shell seems to penetrate, against similar RHA armor and at the same angle of 60°, 35 mm at 1,000 m, and 25 mm at 1,500 m. It offers much more promising performances than the older 3UBR6 against modern infantry fighting vehicles.
This 30 mm gun is mounted centrally on top of the turret, on a mount which may depress by -5° and elevate all the way up to 70°. This high vertical targeting means the autocannon can typically be used in limited fashion against air targets, notably helicopters.
The sight used by the gunner is the TKN-4GA (sometimes also designated ТКН-4ГА-01) sight, which can operate both in day and night conditions and is fully stabilized. As a coaxial machine gun with elevation tied to the main gun, the turret mounts the classic PKT machine gun, which has a rate of fire of 700-800 rpm firing the 7.62×54 mm Russian cartridge. On both sides of the 30 mm autocannon, the vehicle features three 81 mm 902B Tucha smoke dischargers. As on the BTR-82A, the BMP-1AM’s turret is fully stabilized. The vehicle’s weapon loadout is also considered to include a 9K115 Metis ATGM, however, this weapon system is not actually a part of the vehicle itself. It is to be carried and used by the vehicle’s dismounts.
As on the original BMP-1, the BMP-1AM’s turret is operated by a single crew member. Unlike in the original design however, this time, the turret is operated from inside the hull. This does not change the internal arrangement of the vehicle in a significant way though, due to the original turret already featuring a turret basket and an autoloader reaching into the hull.
The Vehicle’s Hull
The hull of the BMP-1AM is very similar to the one present on a classic BMP-1, keeping the form of a welded steel box with a boat-like shape towards the front to improve buoyancy, a centrally-mounted turret, a crew compartment for 8 passengers as the rear with four firing ports on each side and one on the rear left door, four hatches on top and two rear doors opening outwards and also containing fuel tanks.
The main change in comparison to the original BMP-1 comes in the form of the engine, and it is not a particularly radical transformation. The original UTD-20 engine of the BMP-1 has been replaced by its improved version already present in the BMP-2, the UTD-20S1. Both engines are identical performance-wise, featuring 6-cylinders and 4-strokes, being water-cooled and with airless injection diesel engines producing 300 hp at 2,600 rpm. The main modifications between the two are focused on making the operation and maintenance of the engine easier for the crew, including fuel drains from injectors, cover for the access hatches to the nozzle, and a system allowing for a cold-start of the engine without preparation at temperatures of -20° and higher.
The BMP-1AM also features a new radio. The old R-123M has been replaced by a R-128-25U-2 with a communication range of up to 40 km.
It also has a new internal communication system AVSK-2U.
Outside of this new engine and radio, the vehicles being modernized saw their transmissions and chassis revised and repaired to an optimal state; this also included new, more power efficient torsion bars. Small ‘wings’ have been added on the front of the side mudguards in order to mildly improve amphibious performances. Besides those changes, the BMP-1AM seemingly remains identical to the original BMP-1, keeping the same configuration of three crewmen (commander, driver, and gunner) and eight passengers. Overall, the BMP-1AM retains a lot of the old shell and capacities of the BMP-1, with upgrades in a few critical fields. The new turret and equipment resulted in the vehicle’s weight rising to 14.2 tonnes from 13.2.
A Vehicle Presumed to be Designed for Export, Pressed into Russian Service
When it was first presented in August 2018, the BMP-1AM was given the name “Basurmanin”. This name roughly translates to “pagan”. This had, at the time, been thought as a detail that pointed towards the theory that the BMP-1AM upgrade had been designed for export – which seemed a likely conjecture, seeing as the BMP-1 was rapidly fading from service in Russian service in favor of the BMP-2, BMP-3 and, in the future, the Kurganets-25.
However, in 2019, confirmation came that the BMP-1AM was actually entering service with the Russian Army. In early June 2019, Defence Minister Sergei Shoiguaffirmed that the Russian Army would receive 400 modernized combat vehicles in 2019. This total included T-72BM3s, T-80BVMs, and T-90Ms, but also the BMP-1AM “Basurmanin”, serving as a confirmation that the type was entering Russian service.
The BMP-1AM also made an appearance in the ARMY-2019 and ARMY-2020 exhibitions, showing the type was still being offered.
In late June 2020, the active production status of the BMP-1AM Basurmanin was confirmed, as photos of a train loaded with about twenty vehicles, taken in Barnaul, western Siberia, appeared on Russian and later Western social media. As of October 2020, the orders for the type are now known to have been limited to 37 vehicles for Russian service.
The BMP-1AM into Ukraine
On February 24 2022, Russia launched an all-out invasion of Ukraine, with Russian forces entering the country from Belarus, Russia, the self-proclaimed Donetsk and Luhansk’s people’s republics, and Crimea. This invasion obviously saw massive use of Russian armor, however it went worse than many would have expected.
BMP-1AMs were seemingly not spotted in almost two months of conflict. Considering the large quantity of footage available from the conflict, it is likely they were not deployed early in the war, or at least not near active combat zones. Some BMP-1P which have not been through the 1AM upgrade have however been seen. A number of these were in service with the Donbass separatists, but to some people’s surprise, there have been a few in service with the Russian Army in areas where separatists seemingly do not operate, such as Chernihiv Oblast.
From footage of Russian forces operating in Kupiansk, in Kharkiv Oblast, east of the city of Kharkiv, it appears the BMP-1AM was first seen around April 21 or 22 2022. At the time of writing (April 24 2022), only one vehicle has been identified, but considering the small scale of the BMP-1AM fleet, it is likely many if not all or them are deployed within the unit that used this vehicle. The BMP-1AM was known to be used by an unit operating in Siberia or the Far-East, suggesting an unsurprising redeployment to Ukraine. Many units were already moved from other parts of Russia to the Ukrainian border prior to the invasion even happening.
The blog posted by Oryx documenting Russian equipment losses during the 2022 Russian invasion of Ukraine, suggests that, two months into the conflict, more than 500 vehicles have been destroyed, incapacitated, or captured, and human losses, while widely debated, likely are very significant as well. The deployment of more ‘fresh’, even if not necessarily well-equipped, units is at this point (April 2022) likely a necessity for Russia if it wants to push into eastern Ukraine. Vehicles spotted alongside this BMP-1AM in Kupiansk include T-90As, T-72Bs, BMP-2s, MT-LBs, and a myriad of trucks.
The BMP-1AM into Combat
As a result of the BMP-1AMs deployment in Ukraine, combat footage has begun to appear on the internet. The first example (at least as far as the author can attest to) was a video shared on Telegram and later on other parts of the internet more largely from 1st May, very briefly showing a BMP-1AM firing its 30 mm main gun. The vehicle spotted a “Z” marking instead of the “V” seen on the first BMP-1AM identified in the conflict.
A few days later, much more extensive footage would emerge. On May 8, footage of a Russian disastrous river crossing attempt in Siversk, Donetsk Oblast, was shared by Ukrainian media. Alongside precious specialist vehicles, such as three PP-2005 truck-based floating bridges, an IMR-2 T-72 based engineering vehicle, a tugboat, and a PTS-3 amphibious transport, two BMP-1AM were also lost, seemingly the only combat vehicles lost at this location. The two vehicles were abandoned in the river, in what appears to be very shallow water or somehow still floating. It is unclear if they received any major damage or not, but if so it does not appear immediately apparent. One of the two vehicles significantly differs from the first BMP-1AM seen in terms of markings, with two “Z” letters instead of the “V”.
Further footage from the same location appears to show a much more damaged vehicle that, unlike the other two, has its rear submerged. Though the photo is not the best, this vehicle appears to have the same turret and a similarly-shaped hull, and thus very likely is a BMP-1AM. In the following months, occasional BMP-1AM losses would continue to mount up. As of early October, the current total recorded by Oryx Blog is of 16 BMP-1AM lost, of which 10 were completely destroyed. Two were captured by Ukrainians forces in a damaged state.
Conclusion – A Modernization with an Unclear Future
The BMP-1AM stands as a notable modernization program – the first major overhaul of the old BMP-1 undertaken ever since the BMP-1P or BMP-1D of the 1970s and 1980s. It is both a non-negligible but also questionable upgrade. While it entirely replaces the turret of the BMP-1, it brings only very limited changes to the old vehicle’s hull. Though the 30 mm gun appears to be a weapon more suited to modern battlefields than the 73 mm Grom, the vehicle also loses the ability to fire anti-tank missiles from the protected interior of the vehicle – with the ATGM capacity now reposing on the dismounting infantry’s Metys missile launcher. Even though it is a late 2010s modernization, the BMP-1AM remains a second-zone IFV, which pales in comparison to even the early 1980s BMP-2, let alone new Russian products which were previously thought to be on their way to totally phase out the BMP-1 in the Russian Army’s arsenal.
The size of the vehicle pool concerned by the BMP-1AM modernization also remains very small – merely 37 vehicles were ordered, and as of now it is unknown if any further orders of the type are to be undertaken.
Another reason for giving a green light to the modernization of the BMP-1s might be the tight defence budget. The Russian MoD simply has no money to replace all of the obsolete materiel, hence the interim solutions to somehow rearm military units at the secondary theaters, such as the Mongolian border. As of 2022, this interim solution, as many others Russian armored fighting vehicles, including some uncommon one, is now finding itself thrust onto the battlefield as the Russian Army attempts an invasion of Ukraine.
BMP-1AM specifications
Dimensions (l-w-h), m
6.735 – 3.150 – 2.250
Road clearance, mm
420
Weight
14.2 metric tonnes
Engine
UTD-20S1 6-cylinder 4-stroke V-shaped airless-injection water-cooled diesel (300 hp at 2,600 rpm)
Russian Federation (1997)
Heavy Armored Personnel Carrier – Unknown Number Built
In December 1994, Russian forces assaulted the Chechen capital of Grozny in what would later be known as the First Chechen War. After suffering enormous casualties, the Russians finally managed to capture the city, only to be forced out of it again by a Chechen counterattack in 1996. The war ended with the withdrawal of Russian forces from Chechnya following a negotiated settlement.
There were lots of lessons to be learned from the first Russian experience in Grozny (1994-1996). Among these were the importance of training ground troops in the use and maintenance of existing and new equipment, the importance of gathering intelligence that can provide correct estimations of the enemy’s capabilities, the importance of assault planning and coordination as well as plan flexibility, and the poor performance of Cold War era Armored Personnel Carriers (APCs) against modern anti-tank weapons. Often in this conflict, Russian APCs, such as the BTR-70, and even Infantry Fighting Vehicles (IFVs), such as the BMP-2, found their protection hopelessly outmatched by weapons such as RPG-7s and Anti-Tank Guided Missiles (ATGMs) used by their Chechen adversaries.
The latter lesson did not go unnoticed by the Russian high command either.
As a result, the need for increased protection for APCs became more urgent. In response, the Design Bureau of Transport Engineering under the direction of the chief designer of the project, D. Ageev, developed and produced (in conjunction with the State Production Association “Transport Engineering Plant”) a prototype of a heavy armored personnel carrier (BTR-T) based on the T-55 tank chassis, of which there was an abundance in reserves.
It should be noted that the Russians were not the first to convert an existing tank chassis into an APC. Examples of such conversions date as far back as the Great War, with the world’s first APC, the Mark IX, which was based on the Mark V tank. World War II saw many examples of this concept as well, such as the Canadian Kangaroo series. The Russians were not even the first to convert the T-55 into an APC. The Israelis, for instance, had their own conversions of T-55 tanks captured from their Arab adversaries, among which were Egypt and Syria, in 1967 and 1973 during the Arab-Isreali Wars into the Achzarit heavily armored personnel carrier.
An Outdated Workhorse
Developed at the beginning of the Cold War, the T-55 medium tank was one of the most famous tanks produced in the USSR. It was a capable and reliable design with fairly competent protection and firepower for a medium tank of the mid 50s and early 60s, as well as some new technologies, such as an integrated NBC (Nuclear, Biological, and Chemical) protection system.
Around 60,000 tanks were built, making the T-55 the most numerous tank built in the Soviet Union. However, the T-55 was starting to show its age by the 1960s and 70s, especially in terms of firepower, protection, and mobility. As a result, after its replacement by more modern tanks, such as the T-62 and T-64, the Red Army was left with hundreds of T-55s in storage or with reserve units.
Development
The BTR-T (Russian: Бронетранспортёр-Тяжелый “Bronetransporter-Tyazhelyy”) under development was supposed to provide mechanized infantry brigades with a more protected way of traversing the battlefield, which would be vital for increasing their combat survivability, especially in urban environments, all while keeping up with other tracked vehicles in terms of mobility.
The BTR-T was demonstrated for the first time at the VTTV-97 weapons exhibition in Omsk in 1997. However, due to financial difficulties and lack of adequate testing, the vehicle never entered service in the Russian military. There is very little information on the number of vehicles converted.
Design
The T-55 medium tank was already obsolete when the need for a more heavily armored APC arose, and thus many changes had to be implemented in order to prepare the old design for its new role.
The Turret
The removal of the T-55 turret and its 100 mm gun was the most important change of the BTR-T conversion. The old turret was replaced with a lighter low-profile turret that was shifted slightly to the right-hand side of the vehicle for better use of internal space. The turret could be fitted with various remotely controlled weapon types such as autocannons, machine guns, ATGMs (Anti-Tank Guided Missiles), and grenade launchers. It also featured a turret basket that would allow the gunner to rotate with the turret and protect those inside from being hurt during turret rotation
The Hull
The hull of the vehicle saw extensive modifications, with the intention of increasing the protection, as well as the volume of the hull. The roof plate of the hull was replaced with a new one that incorporates hatches for the mounting and dismounting of infantry.
The frontal plate was up-armored through the addition of Kontakt-5 ERA (Explosive Reactive Armor) armor, which was designed to combat the effects of shaped charge warheads as well as APFSDS (Armour Piercing Fin Stabilized Discarding Sabot) ammunition. The new ERA armor is bolted on top of the existing vehicle glacis in the form of individual blocks. When a round impacts the ERA block, the block explodes, creating a counter charge that helps to either weaken or completely negate the impacting penetrator. The addition of Kontakt-5 to the BTR-T is claimed to have improved the frontal plate’s protection to the equivalent of 600 mm of RHA (Rolled Homogeneous Armor).
Spaced armor, rubber side skirts, as well as ERA were added to the side of the vehicle, thus increasing the vehicle’s survivability against attacks from the side.
The side plates also featured additional storage space through the use of large boxes located along the sides of the vehicle. Additional fuel tanks were also introduced. However, unlike the T-55, these fuel tanks are stored in armored containers in the rear of the vehicle. Not much information is available regarding the capacity of said fuel tanks, but it can be assumed that they would have had a similar capacity to the T-55’s additional fuel drums, 200 liters, which would give the BTR-T a net fuel capacity of 1,100 liters of fuel.
Smoke grenade launchers were also added in the form of four sets of three 902V Tucha that launch 81 mm smoke grenades on both sides of the vehicle.
As for the floor armor plate, it was reinforced with anti-mine protection, though not much information is available on the type and efficiency of this protection.
For the interior of the vehicle, the basic layout remained similar, with the crew compartment situated in the front and middle parts of the vehicle, and the engine compartment in the back. The interior also featured an air conditioning system and an NBC protection system.
However, minor changes and improvements were made, such as increasing the number of hatches to four: the commander’s on the left, the driver’s on the right, and two in the back for passenger mounting and dismounting. Another improvement came in the form of a set of periscopes on the top of the vehicle for the passengers. The interior space could accommodate 5 personnel alongside 2 crew members (the commander/gunner and the driver). It should be noted that this is a very low capacity for an APC, which is one of the problems this design had.
As for the engine, the V-55 12 cylinder diesel (the same found on the T-55 medium tank) was kept without changes. It has a power output of 600-620 hp, giving the vehicle a top speed of 50 km/h and an operational range of 500 km.
The transmission also remained without changes. It was manual, and it included the main multi-plate clutch, five-speed synchromesh gearbox, final drives, and universal turning mechanisms. Overall, the mobility of the BTR-T was largely unchanged from the medium tank it was based on.
Armament
As mentioned before, the BTR-T was designed to be capable of carrying a multitude of different weapon systems to ensure the survival of the vehicle against the numerous threats it might encounter on the battlefield. The turret’s weapon systems can be configured and customized based on the desire of the buyer. These weapons include the 2A42 30 mm Autocannon, the 2A38 anti-aircraft gun, the AGS-17 automatic grenade launcher, the NSVT heavy machine gun, and the 9M113 Konkurs ATGM. Furthermore, a combination of these weapons could be configured based on the desire of the buyer.
30A 2A42 Autocannon
The 30A 2A42 dual-feed open-bolt gas-operated autocannon is chambered for the Soviet 30×165 mm cartridge. It is designed to combat lightly armored targets at ranges up to 1,500 m, lightly armored enemy structures at ranges up to 4,000 m, as well as air targets flying at low altitudes up to 2,000 m with subsonic speeds and slant ranges up to 2,500 m. The BTR-T has the capacity to carry only 200 rounds for this gun, which is a notable disadvantage in the design of the vehicle.
It features two firing modes: fast at 550-800 rds/min, and slow at 200-300 rds/min. The weapon fires a multitude of rounds:
3UBR6: Armor Piercing Tracer for engaging armored targets. It uses the 3BR6 projectile. At a 60 degree angle, this projectile can penetrate 20/18/14 mm of RHA at the ranges of 700/1,000/1,500 meters respectively. This performance is considered mediocre against older light armored vehicles such as the American M113 APC, but against more modern vehicles such as the M2A2 Bradley, the 3BR6 would be less useful. The tracer burns for 3.5 seconds. At 1.5 kilometers, the round has a 55% probability of hitting an APC-type target.
3UBR8: Armor Piercing Discarding Sabot Tracer for engaging armored targets with much better performance than the 3UBR6 in terms of penetration, velocity and accuracy. It achieves this by using a plastic discarding sabot with an aluminum plug in its 3BR8 projectile which contains a tungsten alloy penetrator. The penetrator lacks a ballistic cap which would weaken its performance against composite, sloped and spaced armor. It can penetrate 35/25/22 mm of 60 degree angled RHA at distances of 1,000/1,500/2,000 meters respectively. At a range of 1.5 km, the probability of hitting an APC-type target with the 3UBR8 is 70%.
3UOF8: High Explosive Incendiary for neutralizing enemy infantry, soft-skinned vehicles, lightly armored structures and helicopters. It can also be effective at disabling optical and sighting systems of heavily armored vehicles. It contains a 49 g charge of A-IX-2 explosive filler and uses the A-670M PD (Point Detonating) nose fuze, which would detonate 9 to 14 seconds after the round is fired. The round is loaded in a 4:1 ratio of 3UOF8 to 3UOR6.
3UOR6: Fragmentation Tracer for complimenting the 3UOF8 for fire correction purposes. To make room for the tracer element, the mass of the explosive filler was reduced to 11.5 g, which reduces its explosive capacity. The tracer burns for 14 seconds.
2A38 Anti-Aircraft Gun
One of the weapon options offered by the BTR-T turret is a dual twin-barrelled 2A38 30 mm anti-aircraft autocannon like the one found on the Pantsir-S1 air-defence system. Entering service in 1982, the 2A38 is a 30 mm autocannon produced by TulaMashZavod. It is designed primarily to combat low-flying aircraft and helicopters as well as soft-skinned ground targets. It features twin water-cooled barrels supplied by a single belt-feeding mechanism. Like the aforementioned 2A42, it is chambered for 30×165 mm and uses similar ammunition types with similar muzzle velocities. However, it has a much higher rate of fire of 4060 – 4810 rds/min to fulfil its anti-air purpose more effectively. It should be noted that there does not appear to be any form of radar guidance for the 2A38 on the BTR-T, which would decrease the weapon’s effectiveness against enemy aircraft.
AGS-17 Grenade Launcher
Developed in the late 1960s, the AGS-17 automatic grenade launcher is capable of firing 30 mm HE (High Explosive) rounds, designed to deal with enemy infantry and light-skinned vehicles. The rounds are fed by a steel belt, and the weapon uses recoil to power its automatic cycle through a blowback mechanism. It is capable of a 400 rds/min rate of fire, and has an effective range of 800-1,700 meters.
NSVT HMG (Heavy Machine Gun)
The NSVT is a version of the NSV heavy machine gun modified for installment on armored vehicles. It is a 12.7 mm heavy machine gun designed to deal with infantry and low-flying aircraft, designed in the 1970s. It has a rate of fire of 700-800 rds/min and a muzzle velocity of 845 m/s. It can engage ground targets at a range of 2,000 meters or less, and 1,500 meters or less for air targets. The weapon would be remotely controlled from inside the vehicle.
ATGM (Anti-Tank Guided Missile)
The ATGM system chosen was the 9M113 Konkurs, which was the main Soviet ATGM weapon of choice since the mid-70s. Launched from the 5P56M missile launcher unit, the missile was designed to combat enemy armored vehicles and structures.
It is a Semi-Automatic Command to Line of Sight (SACLOS) wire guided missile that is aimed and guided to its target through the use of a sighting device that is constantly pointed at the target. The missile has an operational range from 75 meters to 4 kilometers. It flies to the target at a speed of 208 m/s. The missile carries a HEAT (High Explosive Anti-Tank) shaped charge warhead, which, upon contact with the target, detonates its explosive charge, forcing the inner metal sheet to collapse on itself, forming a high-velocity superplastic jet, which punches through the target’s armor. This gives the Konkurs the ability to penetrate up to 600 mm of RHA (Rolled Homogeneous Armor). Later variants of the Konkurs, such as the 9M113M, use a tandem shaped-charge warhead in order to penetrate armor that is protected by ERA (Explosive Reactive Armor).
Problems
The design of the BTR-T presented many flaws, the most important of which was the small size of the hull, which only allowed for 5 passengers to be transported. Another flaw is the poor positioning of the mount/dismount hatches for the 5 passengers, which would require them to climb over the engine deck to access the hatches. This, coupled with the small size of the two hatches, made mounting and dismounting the vehicle a difficult process.
These problems were the result of the layout of the hull, as it remained largely unchanged from the base T-55 hull, which had the engine compartment in the back of the vehicle. Another problem was the lack of firing ports for the passengers. Additionally, the lack of a small-caliber weapon, such as the 7.62 mm PKT present on other Russian armored vehicles, including the BMP-2, proved problematic. This decreased the versatility of the vehicle against soft-skinned targets. The small amount of autocannon ammunition carried (200 rnds), resulting from the vehicle’s cramped interior, was also troublesome.
Service
The information regarding the testing, operational history, and the numbers of BTR-Ts converted is very scarce. The financial crisis that the Russian Federation suffered in the late-90s prevented even sending an initial batch to the frontline for experiments. As a result, the BTR-T remained out of service. The manufacturers resorted to offering the transformation of existing T-55s serving under foreign militaries, of which there are more than plenty. These potential conversions will be carried under license by the buyer if they were ever to happen.
Some sources claim that in 2011 Bangladesh was the first country to convert 30 of its T-54A fleet into BTR-Ts. Further details on this contract are not available.
Conclusion
The BTR-T was a step in the right direction for its purpose. It featured decent protection and a diverse selection of armament. Almost more importantly, it offered all of this for the cheap price of converting already existing T-55 medium tanks, without the need for major overhauls or redesigns. However, due to design flaws of the BTR-T and financial hardships that the Russian government was suffering from in the late-90s, the vehicle was never approved for production. It did, however, inspire and influence other projects for the same purpose, such as the BMO-T, which was adopted by the Russian military for specialized flamethrower squads.
Illustration of the BTR-T by Tank Encyclopedia’s own David Bocquelet.
Specifications
Dimensions
6.4 x 2.85 x 1.8 meters
Crew
2 + 5 passengers
Propulsion
V-55, 12-cylinder V-type liquid-cooled diesel, 570 hp
ERA armor
RHA equivalent – 600 mm over the frontal 30 degree arc
Sources
www.arms-expo.ru (RU)
О современных разработках высокозащищенных машин пехоты (RU)
BTR-T from the tank (RU)
Тяжелый бронетранспортер БТР-Т (RU)
В Бангладеш переделали 30 Т-54А в омские БТР-Т (RU)
30-мм автоматическая пушка 2А42 (RU)
ДЗ Контакт-5 (RU)
АГС-17 «Пламя» – автоматический станковый гранатомёт (RU)
T-54
ПТРК «КОНКУРС» (RU)
30x165mm Cartridges
2А38 (RU)
30mm 2A38 (RU)
Military Parade magazine – 1998 p 38-40 (RU)
Armor magazine – 2001 p 13-14
Infantry magazine – 2000 p 16-18 T-54 and T-55 Main Battle Tanks 1944-2004 Steven J. Zaloga Russia’s Chechen Wars 1994-2000 Olga Oliker
Russian Federation (2002)
Heavy Infantry Fighting Vehicle – 15-20 Built
BMPT Terminator being showcased at an expo.
Philosophy of a Russian heavy IFV
The BMPT Terminator (the name “Terminator” is not an official designation, but used by the designers for publicity reasons) is a support combat vehicle which is mainly meant to be used in urban areas. It is, quite obviously, based off the T-72 without the iconic hemispherical turret, which is exchanged for an unmanned platform with a single machine gun, four anti-tank missiles and dual 30 mm (1.18 in) auto-cannons. The hull has a superstructure built onto to it, which allows for more space for the crew.
Since tanks aren’t really suited for use in urban areas, this is a great alternative to the regular MBT, because it possesses a rapid enough rate of fire to react to any enemy vehicles in its surrounding and the four missiles are excellent when fighting against heavily armored targets. However, this vehicle is not a tank substitute, as it cannot perform as well in non-urban areas. While it is still lethal against other softer targets, it is unsuited to the extreme ranges that tanks battle at. Another advantage that the BMPT has over regular tanks is the elevation and depression. The gun is able to elevate and depress enough to hit at any targets, like building tops and other tall structures.
Early developments
Before the Terminator, two earlier prototypes were placed in competition for the BMPT requirements. These were the Object 781 and the Object 782, both made by Chelyabinsk and lead by V.L. Vershinsky. The main reason these two vehicles were ordered was the performance of IFVs in the Soviet War in Afghanistan. IFVs such as the BMP-1 and the BMD series proved to struggle against infantry when faced with portable anti-tank weapons, such as the well-known RPG series. Another downfall of the BMP-1 was the lack of elevation (the BMP-2 fixed this problem) which allowed the enemy to take a major advantage when engaging it from above. The Object 781 and the Object 782 were based off the T-72B, with major modifications. Object 781 and Object 782 stored at the Kubinka Tank Museum
The Object 781 was dual turreted, each turret having a 30mm 2A72 (basically a simpler 30mm 2A42, which is seen on Soviet/Russian helicopters and IFVs) with a PKT 7.62mm machine gun as a companion. It also mounted an anti-tank missile system of an unknown type (most likely the 9M133 Konkurs). Its competitor was the Object 782; it had an actual turret, as opposed to the two unmanned turrets of the Object 781, with a very similar hull. The profile was smaller and it was armed with a 100mm 2A70 low recoil gun and a 30mm 2A72 auto-cannon which were directly connected to each other (similar system and weapons on the BMP-3). It was also armed with two 40mm grenade launchers (one on the hull and the other on the turret). The Object 781 won and was probably considered for mass-production, but the break-up of the Soviet Union ruined that prospect. Object 787 at the Kubinka Tank Museum
About five years later, another prototype was made and built by Chelyabinsk; this prototype was based off the T-72AV. This project was built because of tank performance in Chechnya (which was abysmal). The project kept the turret but removed the big 125mm main gun for a pair of 30mm 2A72 auto-cannons and six unguided rockets on each side. It also added extra structure at the back, in order for the armament to work properly and shield it from flanking fire. This tank was praised by many of the designers and some military officials. Unfortunately, work on the project was canceled because it was being advertised on radio and on television. Everyone who was working on the project was accused of “giving away Russia’s secrets” (keep in mind that Russia was in chaos during the 90’s). While they weren’t allowed to work on this vehicle, in particular, this did not stop the urge for an armored fighting vehicle with missiles, auto-cannons, and lots of armor. The BMPT Terminator prototypes
In the early 2000’s, work started on a new project called the Object 199, with the name “Ramka” attached to it. The Object 199 is the tank that came to be known as the BMPT Terminator. It was shown to the public in 2001 as a mock-up and the real project was unveiled to the masses in 2002. The early design was armed with a single 30mm 2A42 and four 9M133 “Kornet” ATGMs with two AG-17 grenade launchers and one 7.62mm PKTM as secondary armaments. Further development accompanied the 30mm auto-cannon with another 30mm auto-cannon and replaced the 9M133 “Kornet” ATGMs with 9M120 “Ataka” ATGMs.
Design of the BMPT
Armament
Instead of the 30mm 2A72 seen on the first 3 prototypes, the BMPT was equipped with the more complex 30mm 2A42 autocannon (effective range of 4000 meters). This auto-cannon is stabilized on two planes and has a rate of fire ranging from as low as 200 rounds per minute to 800 rounds per minute, with both having -5° and +45° and 360° of turret rotation. The BMPT’s second primary armament is the 130mm 9M120 “Ataka-T” anti-tank missile (industrial code is B07S1), with claims from the manufacturer that it can penetrate 800 mm (2’7”) of homogeneous armor with ERA with its HEAT ammunition (good enough for the side or rear of any modern tank). There are four of these anti-tank missiles, with two of them being placed vertically on both sides of the 30mm auto-cannons. This anti-tank missile is guided by a semi-automatic laser beam with flexible elevation angles (-10°/+25°). The missile has a flight velocity of 550 m/s with a maximum range of 5800 meters; it is controlled by the VIAM.461112.001 ground control equipment inside the BMPT. Since this is not a 9M120F variant (anti-personnel variant), it does not have the ability to carry anti-personnel missiles or not supposed to.
A closeup of all the BMPT’s weapons except for the two 30mm grenade launchers
One of the BMPT’s secondary armament is one 7.62 PKTM machine gun that is situated between the two autocannons, with an aiming range of 1500 meters, muzzle velocity of 850 m/s, and a theoretical rate of fire of 700-800 rounds per minute. This machine gun has the same elevation and depression as the 30mm auto-cannons since it’s fixed on the same oscillating platform with the 30mm auto-cannons. The BMPT’s second secondary armament are two 30mm AG-17D grenade launchers. These grenade launchers are placed at the front of the tank on the far side of each other. They have the ability to fire 400 rounds per minute with a low muzzle velocity of 185 m/s and are able to kill a person up to 7+ meter radius from 1700 meters away. The grenade launchers on the right have 5° to the left and 27° to the right and the grenade launchers on the left have 27° on the left and 5° on the right with horizontal stabilization. Both of the grenade launchers have -5.5° depression and +20° elevation (no vertical stabilization). The BMPT is truly a killing machine with nine weapons (four different weapons) at the BMPT’s disposal Mobility
The BMPT is powered by a V-92S2 (2000 rpm, V12, 4-stroke, multi-fuel, liquid cooling, and turbocharger) engine that churns out about 1000 hp. Combined with the weight (48 tonnes, 53 short tons, and 47 long tons) of the BMPT, it has a power-to-weight ratio of 20-21 hp/t, with a range of 550 km and a speed of 60 km/h on hard roads. The gearbox has seven forward gears and one reverse gear. The BMPT’s suspension is a torsion bar suspension (like most tanks designed from the 50’s and onwards) with shock absorbers, six rubber-lined road wheels, one front idler wheel, one rear drive sprocket, and three return rollers on each side. Ground clearance is 406mm and it’s able to ford water as deep as 1.8 meters with preparations and 1.2 meters without preparations. It is also able to climb over obstacles up to 0.85 meters at 30 degrees and able to cross trenches of 2.6-2.8 meters wide. Protection
Since the armor is based on the T-72, it will most likely have the same armor as the T-90 or a modernized T-72. It also has Relikt ERA, which is said to be stronger than Kontakt-5. The side skirts are covered with soft material armor, cage/slat armor at the rear, and hard panels made of different materials. The crew is NBC protected from nuclear, biological, or chemical weapons, as the acronym suggests. It also has an automatic fire extinguisher and System 903A smoke grenade launchers to conceal itself when spotted by the enemy or against guided weapons using infrared.
Active service
While the BMPT is not in Russian service since it is based on old Soviet tank designs, it is being used and bought by Kazakhstan and Algeria. Kazakhstan even went further by signing an agreement with UralVagonZavod in September of 2013 to co-produce the BMPT. Kazakhstan is providing decommissioned T-72s while Russia, specifically UralVagonZavod, will provide modules and spare parts with which Kazakhstan will assemble these tanks in their nation. This is a great way for UralVagonZavod to make a profit and for Kazakhstan to revive their old Soviet-era T-72s to current standards.
Peru also expressed interest to UralVagonZavod during Peru’s SITDEF (Salón Internacional De Tecnología Para La Defensa Y Prevención De Desastres Naturales) expo in 2015, with an interest to upgrade their aging T-55s with BMPT turrets and other possible modifications to the hull. However, these T-55s may be replaced or at most accompanied by Russian T-90s, Spanish Leopard 2A4s, or Dutch Leopard 2A6s. In addition, various Israeli companies and the Peruvian Desarrollos Industriales Casanave, with the association of the Ukrainian Kharkiv Morozov Machine Building Design Bureau, have also offered upgrades for the Peruvian T-55s. BMPTs in Kazakhstani or Algerian service.
BMPT-72 Terminator-2 (2013)
This support combat vehicle was first revealed at the Russian Arms Expo (RAE) at Nizhny Tagil, Russia in 2013. The Terminator 2 is being sold as an armor upgrade package, rather than an actual tank, with two engines available. The two engines are the V-84MS (840 hp, 2000 rpm, V12, 4-stroke, multi-fuel, liquid cooling, and gear driven centrifugal type supercharger) and the V-92S2 (1000 hp, 2000 rpm, V12, 4-stroke, multi-fuel, liquid cooling, and turbocharger). These upgrades removed the two frontal 30mm grenade launchers; this reduced the crew from five to three, but also lightened the load from 48 tonnes to 44 tonnes.
The armament of the BMPT-72 Terminator 2 is the same (except for the removal of the two 30mm grenade launchers), however, the armament is better protected and the structural support of the four ATGMs is enhanced and positioned horizontally instead of vertically. The FCS has also gotten an upgrade with a new multi-channel gunner’s sight that is equipped with a thermal channel, night vision, laser range finder, laser guidance system for missiles, and independent 2-plane stabilization of field of view with a sighting range of 5000 meters. The BMPT-72 received a new digital ballistic computer with weather and topographical support and the armament is stabilized on two axes with electromechanical traversing and elevating drives. Lastly, improved NBC protection is provided for the crew. BMPT-72 Terminator 2 unveiled at RAE 2013
BMPT-72 Terminator 2 in service
While the Terminator 2 isn’t in service as far as we know, Azerbaijan held an arms expo named ADEX (Azerbaijan Defense Exhibition) in 2014, which allowed arms dealers to show off their weapons to the armed forces of Azerbaijan. Since Azerbaijan has territorial issues with Armenia about the Nagorno-Karabakh region, the small Caucasian nation is looking for potent weapons in case things get heated again between the two countries. During the expo, Azerbaijan had stated that they’re interested in the Ka-52 attack/scout helicopter and the BMPT-72 Terminator 2 and numerous other weapons. In 2013, various unspecified Persian Gulf nations also expressed interest in the Terminator 2 during the Russian Arms Expo (RAE).
The Russian Federation has however refused the second iteration of the BMPT as well. The reasoning is that since the T-15 Armata exists, there is no reason to adopt the Terminator 2, with possibly less armor and no infantry carrying capacity. Lastly, during India’s DEFEXPO in 2014, UralVagonZavod proposed two upgrades to India’s obsolete T-72s. UVZ (UralVagonZavod) proposed the BMPT-72 package on India’s T-72s, which would extend their service life. They also proposed an Arena-E APS upgrade on Indian T-72s. Active Protection Systems fire a small projectile at cumulative and explosive missiles from portable/non-portable anti-tank weapons such as RPGs, Kornet, Konkurs, TOW, etc, detonating them before impact. An article by Joshua Martinez a.k.a. SovietTenkDestroyer
Couple built for exhibitions but generally unknown
Kazakh BMP-T
Russian BMP-T demonstrator
Video: The Terminator in Action (live footage)
Gallery
Kazakh BMPT in a parade, 2011.
BMPT 9M120 Ataka ATGM launcher tubes closeup, Engineering Technology Day 2012 BMPT Terminator at the Engineering Technologies days, 2012. The Terminator as shown at Eurosatory, 2012.
This website uses cookies to improve your experience. We'll assume you're ok with this, but you can opt-out if you wish. Cookie settingsACCEPT
Privacy & Cookies Policy
Privacy Overview
This website uses cookies to improve your experience while you navigate through the website. Out of these cookies, the cookies that are categorized as necessary are stored on your browser as they are essential for the working of basic functionalities of the website. We also use third-party cookies that help us analyze and understand how you use this website. These cookies will be stored in your browser only with your consent. You also have the option to opt-out of these cookies. But opting out of some of these cookies may have an effect on your browsing experience.
Necessary cookies are absolutely essential for the website to function properly. This category only includes cookies that ensures basic functionalities and security features of the website. These cookies do not store any personal information.
Any cookies that may not be particularly necessary for the website to function and is used specifically to collect user personal data via analytics, ads, other embedded contents are termed as non-necessary cookies. It is mandatory to procure user consent prior to running these cookies on your website.