Categories
Cold War French Prototypes

Voisin CA 11 amphibious light tank

France (1949-53)
Light colonial amphibious tank prototype – 1 built

Immediately after the conclusion of the Second World War, France found itself embroiled in a large-scale guerilla war in its colony of Indochina as it attempted to reassert control over the area. Seeking to overthrow their colonial rulers was the Vietnamese Việt Minh, led by Hô Chi Minh, as well as associated Laotian and Cambodian movements.

 French colony of Indochina map
The French colony of Indochina map with its various territorial subdivisions: Cambodia, Laos, Cochinchina, Annam and Tonkin. Source: croiseur-lamotte-picquet.fr

Indochina was a particular theater that was characterized by a large number of swamplands and jungles, particularly along the Mekong Delta in the south of the country and the Hong River in the north. This type of terrain was particularly hard to operate in for French armored vehicles, particularly wheeled armored cars like the Panhard 178B or the British Coventry Armored Car, but even for tracked vehicles, such as the American M8 Scott or M24 Chaffee. Tracked amphibious vehicles were an obvious answer as to how to bring armored firepower into swamplands and rivers; however, by 1949, France was yet to have any of those vehicles in its inventory. While the USA had a potential answer in the form of the LVT-4 amphibious assault vehicle and its assault version, the LVT-4(A), the acquisition of such vehicles by the French had yet to be negotiated.

A Panhard 178B armored car
A Panhard 178B armored car in Indochina. Though armored cars were quite useful for patrolling roads, the limitations of such vehicles in rice paddies or swamps are obvious. Source: char-français

Setting requirements for an anti-guerrilla amphibious tank

On the 18th of January 1949, as the Indochina War had been raging on for more than three years by that point, the French EMA (Etat Major des Army – ENG: Army Headquarters) requested from DEFA (Direction des études et fabrications d’armement – ENG: Direction of Armament Studies and Manufacturing), the service in charge of directing France’s military research and production a light amphibious tank to be used in Indochina and, generally, in France’s colonies and overseas territories. Those other colonies and territories included Equatorial and Western Africa, and French Guyana – all places which would also benefit from the use of amphibious light tanks. This vehicle was desired to weigh not more than 11 tonnes, offer good off-road performance, particularly in swampy terrain, and mount a 75 mm howitzer in a turret.

Voisin/SNECMA’s proposal

On the 25th of April 1950, the Voisin branch of the state company of SNECMA accepted to design a vehicle for the light amphibious tank requirements, as well as to produce a scale model which would be used for floatation trials.

The Société des Avions Voisins (ENG: Voisin Planes Society) was, despite its name, more of a car-manufacturing company that had been founded by an aviation pioneer than an aircraft-manufacturing company. Founded in 1919, this company took the place of Aéroplanes Voisins (ENG: Voisin Aircrafts), an actual plane-manufacturing company that had manufactured a number of different aircraft for France’s aviation during the First World War. This included aircraft, such as the Voisin III to XI biplanes, which were notable for their pusher configuration.

The Société des Avions Voisins had, after the end of the Second World War, been incorporated first into the engine manufacturer Gnôme-Rhône, which was nationalized in 1945 to form the core of the state manufacturer SNECMA (Société nationale d’études et de construction de moteurs d’aviation – ENG: National aircraft engines study and construction society). Despite the Société des Avions Voisins being out of operations for five years by 1950, its name remained in occasional use for designs which were produced by what remained of its design bureau. This was the case of the CA 11 light amphibious tank; alongside a couple of other colonial amphibious projects from the same era, such as the CA 2 and CA 4 troop-transport tankettes, the CA 11 appears to have been Voisin’s sole foray into armored vehicles manufacturing.

The manufacturing of a scale model apparently went quite well, with an order for a mild steel prototype being made quickly. This prototype was manufactured in 1951-1952 and presented to the French military at Satory on the 20th of March 1953 for trials.

Voisin’s amphibious tank design

Voisin’s amphibious tan
Voisin’s amphibious tank from a ¾ angle. Source: Les véhicules blindés français 1945-1977, Pierre Touzin, éditions EPA, 1978

The vehicle designed by the Voisin design team was a 12.5-tonne tank. Despite this light weight, the vehicle had fairly large dimensions, closer to a WW2-medium tank than a light tank, measuring 5.81 m long, 3.05 m wide, and 2.66 m high, with a ground clearance of 0.40 m. These large dimensions are likely a consequence of the vehicle’s amphibious hull design.

The fairly large hull of the Voisin tank bears some resemblance to the general shape of the LVT-4, likely due to some inspiration being taken from the American design. The boat-like hull shape optimized floatation capacity, with a bow striking out at the front, the drive sprockets being installed at its side, and, further back, a frontal plate angled backward. The suspension of the vehicle was relatively large, covering most of the hull’s side, in a fashion that can be reminiscent of vehicles such as the pre-war B1; such large suspension is typically installed to optimize all-terrain capacity. The suspension featured six fairly large road wheels at the bottom of the hull, as well as what appears to be a tender wheel at the rear. Three large box-shaped elements are located between the drive sprocket and tender wheels; the purpose of these may have been to improve floatation. The tracks were also clearly influenced by the LVT vehicles with a large curved grouser or spud on each link to improve traction is very soft ground as well as drive when negotiating water obstacles.

The engine, likely installed at the rear, was an air-cooled 8-cylinder, 10.857-liter unit producing 300 hp at 3,000 rpm, although it is not known whether it ran on petrol or diesel. This engine gave the CA 11 a very respectable power-to-weight ratio of 24 hp/ton; while the fuel consumption and capacity are unknown, the vehicle is known to have had a respectable range of 300 km. On road, the vehicle could reach a maximum speed of 54 km/h; on water, the maximum speed was 12 km/h. The CA 11 did not feature any hydrojet system; on water, its propulsion was assured by the tracks. These were 0.35 m wide, and appear to have used a flexible, most likely rubber construction. The armor layout of the vehicle is unknown, but the combination of light weight and fairly large dimensions of Voisin’s tank likely meant the armor was very thin, as typically expected of a counter-insurgency vehicle or amphibious tank. The crew configuration of the hull is also unknown; it may have had either merely a driver, or perhaps two crew members.

The SAGEM turret

rear view of the Voisin CA 11
A rear view of the Voisin CA 11, showing the flat rear of the turret’s basket. Source: Les véhicules blindés français 1945-1977, Pierre Touzin, éditions EPA, 1978

The Voisin CA 11’s turret was not designed by Voisin, but instead, by another company, SAGEM (Société d’applications générales d’électricité et de mécanique – ENG: Society of general electricity and mechanic applications). Although there is little detailed information on it, observing the few known photos of the CA 11 show the turret appears to have used a welded construction. To the left, a large commander cupola featuring a number of episcopes (perhaps 8) is located; another observation device can be found on the right-side. Though the crew configuration of the CA 11 is unknown, the turret generally appears to have been geared to house a two-man crew, with the commander to the left and the gunner to the right.

The main armament of the CA 11 was a 75 mm howitzer. Though the exact model is not specified in any source, the gun present on the vehicle shows many similarities with a 75 mm gun that was developed for the Panhard 178B, but never ended up used in the post-war model of the Panhard 178 armored car. This was a 75 mm gun based on the old 75 mm mle. 1897, shortened but firing the same shells with a lower velocity (though only by 15 m/s according to French documents). This gun was designated as the 75 mm SA 45. This gun was never known to have been mounted on a Panhard 178B prototype, and if it was actually the gun present on the CA 11, the Voisin amphibious tank may have been the first known vehicle to mount this obscure armament. It would have had the notable advantage of using the same ammunition as the 75 mm mle. 1897 – a mainstay of the French Army for decades, with large stocks of ammunition still in existence. That being said, while the CA 11’s gun appears visually similar to the SA 45, if it actually used this gun has not been confirmed. The vehicle’s ammunition stowage is unknown as well; it is, however, it is known that it used a 7.5 mm MAC31 as a coaxial machine-gun, likely on the right of the main gun.

75 mm SA 45 in a turret
Plans for the mounting of the 75 mm SA 45 in a turret, for the Panhard 178B armored car which ended up using the 47 mm SA 35 instead. This gun was likely the one used on the CA 11. Source: French military archives

Conclusion – Overtaken by the LVT-4

Voisin’s CA 11, though an interesting design for the challenges faced by France in Indochina, arrived way too late; by 1953, when the prototype was presented to the army, a solution had already been found to the problem of bringing armored firepower to the swamps and rivers of Indochina: The acquisition of American LVT-4s had been negotiated, with the first examples being delivered in 1950 – before the prototype CA-11 was even unveiled. While the CA 11 could arguably have filled a niche for the French if the American deliveries had only included machine-gunning armed examples it was rendered redundant as the American deliveries included 75 mm-armed LVT-4(A). The French themselves would eventually modify a number of the troop transport LVTP-4s to accommodate 75 mm recoilless guns or even turreted 40 mm Bofors autocannons.

With the presence of the LVT-4 in the French army, the procurement and production of the CA 11 would have been a costly and redundant affair. The Indochina War in general was, by that point, a costly and very unpopular affair in which France was embroiled, with no hope of quickly recovering the colony. With little enthusiasm for the idea of remaining involved in the region, France ended up pulling out in 1954, leaving, as far as possible, friendly local governments in place. The end of the Indochina war likely removed all enthusiasm for a colonial amphibious tank for a time although the LVT-4s which had been obtained were conserved. They went on to be used to form an amphibious assault school in Algeria and eventually being used during the Suez Crisis against Egypt in 1956. The Voisin CA 11 project was likely shelved indefinitely, marking an end to Voisin’s short foray into armored vehicles manufacturing. As for the manufactured prototype, its fate is unknown, but it very likely ended up scrapped.

French 40 mm-armed LVT-4s in rice paddies
French 40 mm-armed LVT-4s in rice paddies, Indochina. The use of the LVT-4 by the French army, including this local conversion performed by units in Indochina and retained in the following years, made the CA 11 redundant. As for the LVT-4, it would remain in French service until the 1970s.
Tentative side profile of the Voisin CA-11, as no side drawings or good side pictures exist. Illustration by Yuvnashva Sharma, funded by our Patreon campaign.

Specifications

Dimensions 5.81 m  x 3.05 m x 2.66 m
Total weight, battle ready 12.5 tonnes
Crew Likely 3 (driver, commander, gunner)
Propulsion 8-cylinder 10.857 litre air-cooled engine producing 300 hp at 3000 rpm
Range 300 km
Ground Clearance 0.40 m
Max. Speed (road) 54 km/h
Max. Speed (water) 12 km/h
Armament 75mm howitzer (perhaps 75mm SA 45)
MAC 31 7.5 mm coaxial machine-gun
Power-to-weight ratio (in hp/ton) 24

Sources

Les véhicules blindés français 1945-1977, Pierre Touzin, éditions EPA, 1978
Char-français: https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=103
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=680
https://www.chars-francais.net/2015/index.php/engins-blindes/engins-divers?task=view&id=102
French military archives at Châtellerault: Note pour la direction du matériel, N°28.750, 8 Juin 1945

Categories
Cold War French Prototypes

Bouffort Tractor Tank Conversion

France (1983)
Tractor Conversion –  Design only

Agricultural tractors are essential machines in farming. In times of war, these machines have become the donor for an equally bewildering array of armored vehicles to meet some urgent need, usually the imminent threat of an invasion when existing stocks of armored vehicles are in short supply. A strong platform, with decent off-road characteristics, cheap, simple, and plentiful, the abundance of agricultural tractors around the world means that there is a ready supply on which to base an expedient armored vehicle. Given just how different these vehicles can be, however, this usually has meant a bespoke solution for each vehicle. There is at least one thing which almost all tractors have fitted since WW2 – the 3-point linkage on the back. If a system of armoring a tractor could be made so that it fitted this type of linkage, then virtually any tractor around the world could be made into an armored vehicle. It is that logic which, in February 1983, led to Frenchman Victor Bouffort designing exactly such a system.

The 3-point Linkage

Attaching implements to a tractor is vital to having them perform roles from ploughing fields attaching cutting equipment, to dragging logs. Prior to WW2, there was no real international standard for how this was done. A simple drawbar from the rear was the common solution. Between around 1919 and 1926, British inventor Harry Ferguson, from Belfast, Northern Ireland, developed a standardised linkage system for the back of a tractor, submitting several patents for elements of the idea.

The rear of one of the first commercial tractors fitted with Ferguson’s 3-point linkage. The 3 points are two at the bottom on either side and one at the top, forming an A-shape. Source: wiki modified by author

The 3-point linkage system was, like all great inventions, simple. Two connection points at the back of the tractor on either side of the rear structure formed the bottom of an ‘A’ shape. The top point of the ‘A’ was attached in the middle above the back end and, thereby, any device, such as a plough connected, could be controlled in both the vertical and horizontal axes. Despite being a hundred years old, this system is widespread in use today around the world because it works and is so simple it is hard to improve upon. Effectively, not only does this mean in agricultural terms that the majority of equipment fits the majority of tractors, but also that there is a ready supply of donor vehicles which can be turned into an armored vehicle by connecting to those points.

From Tractor to Combat Vehicle

Bouffort was to utilize the 3-point linkage as the point at which he wanted to attach what he called a “firing station”, forming the armored body and combat area of a new vehicle.

Able to mount any kind of offensive firepower from rifles to machine guns or light cannons, the cab or ‘nacelle’ was made in a single piece.

A small armored cab on the back of the tractor provided just enough space for a crew-served weapon like a machine gun. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618
Expanding the cab to cover the sides of the tractor and add additional protection around the weapon mounted in the back. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618

The design was foreseen as something which could be made in advance and, being a simple box with no complicated electronics or even its own power source, to be something which was cheap and simple enough to be put into storage until it was needed.

This would offer a user a cheap and rapid means by which, in the event of war or civil unrest, they could be deployed onto existing tractors with these 3-point linkages.

This would, it was felt, provide an alternative or a supplement to existing armored vehicles held in reserve. Various forms or shapes for this box could be done to form either a single or double firing station and it was further possible to use this nacelle to carry food or supplies, etcetera.

Even More

Placing just an armored body on a tractor would cause problems, not the least of which would be the total lack of protection for the original vehicle and driver. One partial solution to this was to provide within the design the means for attaching a second nacelle at the front of the tractor and attach it to the first one (at the back). The space between the two nacelles could then have armored plating attached to cover the unprotected vehicle and driver in the middle.

Mounted on the front instead, the driver would have no view ahead of him. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618
Plan view of the front-mounted cab option with a pair of machine guns. The two men would stand alongside the front of the engine. A noisy prospect. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618

Protection would still be light. The weight of armor from the armored cab/cabs and any additional plates would significantly affect the balance and performance of the vehicle underneath. Any cab on the front would also make steering or driving virtually impossible, as the driver would not be able to see where they are going and, in addition to that, the extra weight would make the vehicle prone to falling over.

With two weapons mounted alongside each other, the cab provided a firing platform but little else. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618
Seen facing the cab at either end, the body provided the appearance of the turret from a diminutive castle. Note that the image has been cleaned digitally to improve clarity. Source: French Patent FR2540618

Conclusion

The design was somewhat retrograde. This sort of idea was more suited to the desperate times of Allied home defense in 1939 or 1940 than a serious attempt at an armored vehicle for the 1980s. The idea of using the 3-point linkage was certainly an inventive one and meant that this idea was universal, as any tractor-based vehicle could use it, but it was simply impractical.

No independent power supply, no simple means of communication with the driver, a lack of protection for the vehicle, difficulty driving, instability, and all on a slow type of platform.

Outside of extremely limited policing work somewhere in a third-world country, it is hard to envisage any potential use for this and even then, a limited one. It is hard not to see that the amount of effort involved here could not simply have been applied to a small utility vehicle of some description like a pickup truck and make a far more capable vehicle far more simply. Unsurprisingly, to date, no examples of Bouffort’s tractor cab-armored vehicle can be found in use around the world.

The first Bouffort Tractor AFV conversion, featuring a rather simple rear compartment with a machine-gun.
The second Bouffort tractor AFV version, with a larger rear compartment and armor over the sides of the driver’s position. This would have probably created problems with the vehicle’s balance and going on steep slopes.
The third Bouffort tractor AFV version, featuring an unusual front-mounted compartment with two unfortunate machine-gunners sitting next to the engine. Visibility for the driver would have been very poor. All illustrations by Pavel Carpaticus Alexe, funded by our Patreon campaign.

Sources

British Patent GB160248 ‘Improvements in or relating to means for coupling agricultural implements to tractors. Filed 15th December 1919, granted 15th March 1921.
French Patent FR2540618 ‘Armoured Body element to be mounted at the front and rear of a cab vehicle’. Filed 4th February 1983, granted 10th August 1984.
Worldwide Patent WO03010041 ‘Auxiliary structure particularly for increasing the carrying capacity of multipurpose tracked vehicles’. Filed 24th July 2002, granted 6th February 2003

Categories
Cold War French Prototypes

ELC EVEN with 120 mm Recoilless Rifles

France (1953-57)
Airborne Light Tank Destroyer – 1 Prototype Built

In the years that followed France’s liberation at the end of the Second World War, the French arms industry, once a world leader but vastly weakened by years of war and occupation, started to re-develop. A number of original vehicle concepts were experimented. One of the odder, but also one which was studied the most extensively, was the concept of very light tank destroyers. These vehicles were rather similar in size and weight to the ‘tankettes’ of the interwar years but were intended to perform a different role. New anti-tank technology, particularly recoilless anti-tank rifles, were used to turn vehicles of this size into efficient tank destroyers. The first known design of such a vehicle appears to date from 1950 and was designed by a military engineer named Pommelet. Apparently it was a very small vehicle armed with an American M20 Super Bazooka and had a crew of just one. While little to no information and no photographs of this prototype appear to have survived to this day, a number of prototypes based on similar principles would appear in the following years.

In 1951, a tank destroyer concept was submitted by an engineer by the name of Henry. This is the oldest of such vehicles of which visual evidence is available. The ‘Henry tank destroyer’ was a tiny, tracked vehicle, armed with a recoilless gun of unknown caliber firing through the vehicle’s axis. The vehicle was planned to have a crew of two men and included inflatable balloons and hydraulic skis. These were supposed to make it amphibious as well as to allow it to easily cross swamps or snowy terrain. This particular vehicle did not go past the design board.

One of the oddest designs of the early Cold War, the ‘Henry tank destroyer’ would theoretically have been a very light, air-droppable, amphibious tank destroyer with very good mobility on all terrains. Photo: chars-francais.net

Endorsement of Light Tank Destroyer Projects

Marshall Juin was one of the most prestigious and well-known French officers after the Second World War, having notably commanded the Free French Corps in Italy. In July 1952, he officially requested the development of a very light tank destroyer armed with recoilless guns. In March 1953, a military commission confirmed the request. The vehicle wanted was a light ‘intervals machine’ (a vehicle meant to cover the spaces left between tank units) armed with either 75 mm, 105 mm or 150 mm recoilless guns, or a Brandt 120 mm rocket launcher. Following this official call for designs, the scope of designers and companies working on a very light tank destroyer expanded, as large companies such as AMX-Hotchkiss and Lorraine got involved. One project, though, was developed by the Etablissements Brunon-Valette – a smaller company that had been producing various products, from bridges, to bottles, to chassis, but had little to no previous experience in the field of military vehicles. The company’s efforts at making a light tank destroyer were led by an engineer of which we only have the last name, Even; this name would be given to his design as well.

The First EVEN Design

The design process of the first version of Even’s light tank destroyer was rather swift, with a mockup being ready for presentation by January 1954, alongside the Lorraine and AMX-Hotchkiss designs. Even’s vehicle had a small and particularly short hull, with a height of 1.4 m with the turret, a width of 2.15 m and a length of 5.3 m. It was very lightly armored, with a maximum of 10 mm on the frontal plate, and 8 mm on the rest of the hull. The vehicle was intended to resist 7.62 mm rounds, anti-personnel landmines and artillery shell splinters. Unsurprisingly for such a small and lightly armored vehicle, it had a very modest weight of just 5 tons and was powered by a SOFAM 168 hp engine placed at the rear of the vehicle. The engine compartment was separated from the rest of the hull by a fireproof partition. The vehicle was able to reach a maximum speed of 75 km/h on-road, and 40 off-road. Two headlights featured on the front armor plate. The driver was placed at the front, gaining access through a large hatch. Unlike the vast majority of armored vehicles, the driver did not sit, but lay down on his back in an awkward position. The internal space was too low for him to even sit. A rather peculiar turret was fitted to the vehicle. as it was not centered, but off to the left, whilst the driver’s compartment and hatch were on the right side of the vehicle. The space given to the gunner was rather small, and he sat on a seat placed on the bottom of the vehicle’s hull. The vehicle was so short that the eyes of a man of average height would be well-placed to align with the gun’s sights. The gunner could enter and exit the vehicle through the turret’s top hatch.

The vehicle was armed with four Brandt 120 mm rocket launchers, two sitting on each side of the turret, firing SNEB rocket-powered projectiles. A 7.5 mm AA52 machine-gun featured on both sides of the turret. It appears that the turret’s armor was somewhat thicker than the hull’s, with 15 mm of steel. With the turret on, the Even vehicle had a weight of about 7.4 tons, reducing its maximum speed to 68 km/h. The vehicle was protected from combat gas and, according to the French Army’s reports on the vehicle, even from nuclear fallout, thanks to a filtered pressurized air system. Communications were assured by an ANVRC 7 radio placed at the rear of the turret. Intercom was used inside the vehicle, though direct voice commands could also be formulated in case it did not work.

The EVEN with the four Brandt 120mm Recoilless Rifles. Photo: French Military Archives, Châtellerault

One of the hardest challenges faced by Even was planning the vehicle’s reloading process. The guns were attached to the turret, and their breeches could not be reloaded from inside of the vehicle. Two different ways of reloading the vehicle existed, both performed by the driver:

The first allowed him to reload without leaving his seat, the turret would rotate so the breeches would be near the driver’s position (meaning the gun would face the rear). The driver then had to open his hatch and could shove the 120 mm rocket-shells into the breeches while remaining in his lying down position. This technique allowed him to remain inside the vehicle but was quite slow and hard to perform.

A simpler alternative, but also one that made him more vulnerable, was exiting the vehicle and reloading the breeches from the outside.

A third alternative existed on paper, but appears not to have been carried on the mockup and prototype: making the rear of the barrels rotatable, so the gunner could reload them from his position by opening the turret’s hatch.

A drum-loaded variant of the vehicle was also considered. It reduced the number of 120 mm Brandt rocket launchers to just one per side of the turret. Each one was fed by a 5-round magazine that could load a shell every 3 to 4 seconds before running out. This version did not leave the drawing board, as it raised Even’s vehicle height by about 20 centimeters and reloading the drums under fire was judged to be very hazardous, even more so than for the four-gun version of the vehicle.

Two photos of the mockup showing the different ways of reloading the guns. Photo: French Military Archives, Châtellerault
Diagram of the EVEN equipped with the revolver mechanism. Photo: French Military Archives, Châtellerault

The 1956 Prototype

The first prototype of Even’s vehicle was completed in July 1955, with testing performed in July 1956. In the meantime, the official requirements had changed quite a bit. In 1955, the French Army requested that the vehicle should use classic anti-tank guns, as the recoilless option, while attractive considering it could allow an impressive amount of firepower on a very small platform, lacked the accuracy and range for proper anti-tank warfare. The project also officially received a name in December 1955, as the Engin Léger de Combat – Light Combat Machine, or ELC for short. Despite the change in requirements, the first prototype of Even’s vehicle, now named the ELC EVEN, still featured the recoilless 120 mm rocket launchers.

The trials performed in July 1956 concerned both the guns and EVEN’s platform itself. These trials showed that, at a range of 451 meters, the Brandt rocket launched SNEB rockets had a horizontal dispersion of up to 4.36 m, and a vertical dispersion of up to 3.05 m, making the vehicle’s accuracy unreliable past almost point-blank range. The shells had a penetration of about 300 mm, which was the same at all distances thanks to the use of shaped charges.

The mobility trials were performed on two different terrains: the first one was a relatively flat, grassy and dry terrain, which the ELC EVEN crossed easily at a speed averaging 40 km/h. The second type of terrain was one that included a number of potholes, ditches and trenches. In it, the vehicle ended up getting stuck at the bottom of a ditch, after the driving shaft of the right sprocket was damaged.

The vehicle was apparently repaired rather quickly, as documents from November 1957 noted that the vehicle had crossed more than 7,000 km without any major technical issues. The documented results of the 1956 trials can be found HERE.

Conclusion – Abandoning the Recoilless Option

However, with prototypes of the next generation of ELCs in the work, this first recoilless gun-armed prototype would soon be abandoned. By November 1957, the prototype of the new version of the ELC would start undergoing trials. While the recoilless version of the ELC EVEN was not as successful as its successor, which would go pretty close to being adopted by the French Army, it nonetheless paved the way for the vehicle’s evolution. The fate and whereabouts of the 1956 prototype remain unknown to this day.

While they would never be adopted in a tank, recoilless guns would still remain in service in the French Army for many years to come. The most notable example would be the Hotchkiss M201 – a mere copy of the WW2 classic Willys MB Jeep. This French-produced model would, from 1963 onward, be fitted with 106 mm M40 recoilless guns in large numbers. These Jeeps were commonly used by the French Army, particularly during its intervention in various Sub-Saharan and Middle Eastern countries, in which its small weight and firepower were greatly appreciated, both against infantry and armor. They would remain in active service until they were replaced with vehicles armed with MILAN missiles in the early 90s.

Picture of the vehicle stuck at the bottom of a ditch, detracked, during the mobility trials. Photo: French Military Archives, Châtellerault


The ELC EVEN with the four Brandt 120mm Recoilless rifles during the 1956 trials.


The ELC EVEN with the projected revolver loading system.

These illustrations were produced by Brian Gaydos, funded by our Patreon Campaign.

Specifications

Dimensions (L-W-H) 5.30 x 2.15 x 1.60 meters (17.3 x 7 x 5.2 ft)
Weight, battle ready 6.7 tonnes (7.3 tons)
Crew 2 (commander/gunner and driver/loader)s
Engine SOFAM 168 hp
Suspension Leaf springs
Speed (road/off road) 70 km/h / ~40 km/h (43 – 24 mph)
Range (road) ~350 km (217 miles)
Armament Four 120 mm Brandt recoilless guns/rocket launchers
Secondary: Two AA52 7.5 mm machine-guns
Armor 8-15 mm (0.3 – 0.59 in)
Total built 1 prototype, 10 (5 90 mm armed and 5 30 mm-armed) pre-production vehicles

Sources

French military archives in Châtellerault (see imgur albums)
www.chars-francais.net


Categories
Cold War French Prototypes

ELC EVEN

France (1957-1963)
Airborne Light Tank Destroyer – 1 Proto., 10 Pre-Prod. Units Built

Through the late 1940s and early 1950s, the French military studied several concepts of lightweight tank destroyers. The objective was to produce a cheap, simple and mobile vehicle with sufficient firepower to knock out vehicles such as the Soviet IS-3 and IS-4 heavy tanks. Thus, significant armor, beyond protecting the vehicle from small arms fire, was out of the equation. After several prototypes and concepts, a set of requirements was determined in 1953, which led to several projects being offered. Some of these projects involved the giants of French military industry, Renault and Hotchkiss, but one came from engineer Even of the Etablissements Brunon-Valette – a somewhat small company with no experience in tank development whatsoever.

Most of these early designs, including Even’s, were armed with recoilless guns. These weapons, which had started appearing in large numbers in the later stages of the Second World War, were notable because of the impressive firepower they could offer. At the same time, due to their non-existent recoil, they could be fitted on lighter platforms than their recoil counterparts of similar caliber. They had some flaws though, most notably their lack of accuracy beyond short ranges. In 1955, the French military came to the realization that such weapons would not provide an effective tank destroyer in plains and open fields, where much of armored warfare in a hypothetical conflict with the Eastern Bloc would take place. Therefore, it was requested that vehicles designed to fulfill the 1953 requirements should be re-designed with more classic, non-recoilless weapons. The program also received its name with this updated set of the requirements in July 1955, becoming the Engin Léger de Combat (Light Combat Vehicle), or ELC for short.

A pre-series 90mm-armed vehicle compared with the popular Citroën 2CV car, 1961. Source: ECPA-D (Picture service of the French Army)

The 1957 Second Generation

Even’s first prototype had been designed in 1953, following a set of requirements formulated in March of that year after a request in July 1952 by Marshall Juin for a lightweight, recoilless-guns armed tank destroyer. The design Even came up with was a very low vehicle, so low in fact, that the driver was in a crouching position in the hull. The vehicle was armed with four Brandt 120 mm (4.7 in) recoilless rifle in a turret able of 360° rotation. A first mock-up was completed in January of 1954. However, in 1955, the French Army changed its requirements, turning away from recoilless rifles and requesting to have its light tank destroyer projects armed with a more classic anti-tank gun. The prototype was nonetheless completed and trialed in 1956. These trials demonstrated why recoilless guns were to be abandoned: while their firepower was considerable, their accuracy was very poor, with, at a relatively low range of 451 m (493 yards) resulted in a horizontal dispersion of up to 4.36 m (14.3 ft) and vertical dispersion of up to 3.05 m (10 ft). The vehicle not only suffered from a very mediocre accuracy but had problems moving in uneven terrain as well. On the first day of mobility trials, the vehicle got stuck at the bottom of a ditch, the driving shaft of the right sprocket, not being able to handle the shock of falling, was damaged.

Following both the change in requirements of 1955 and the rather unsuccessful results of the 1956 trials, Even went back to the drawing board in order to apply the necessary corrections. He had to adapt his design to fit the new requirements and avoid repeating the failures of the first prototype.

Two new ELC EVEN versions emerged from this new design phase and both would both be tested in November of 1957. One version maintained the anti-tank function of the original ELC EVEN prototype, replacing the 120 mm (4.7 in) rocket launcher with a single, magazine-fed 90 mm (3.5 in) gun. The other version was designed to fight infantry and lightly armored vehicles with two 30 mm (1.18 in) autocannons. Anti-aircraft and missile-carrying versions were first mentioned in documents dating from 1957 too. Both designs used the original chassis of the ELC EVEN, short of a couple of changes such as new, spoked road wheels, remained unchanged in the exterior. The vehicles, outside of those changes, remained the same, featuring a particularly low hull, in which the driver, off to the right side of the hull, had to lie down in order to operate the vehicle. The turret was off-centered to the left and was an entirely new design. While the two versions of the new turret had a number of differences regarding their armament, they both shared a number of general characteristics, such as the fact they were oscillating, a feature particularly popular in 1950s French designs, and had a very rectangular shape. These two turret models had a maximum depression of -9° and an elevation of 13° could complete a full rotation in 15 seconds thanks to a hydraulic traverse system, and automatically locked in place when firing. Both turrets featured off-center armament. The height of the vehicle was raised to 1.60 m (5.2 ft) in both.

Diving view on a pre-series ELC EVEN 90 (registered as W 000885). Source: Char Français

The two turrets had little to no weight difference, with both of the new ELC variants having a weight of about 6.7 tonnes (7.3 tons). Mobility tests performed in November 1957 showed this new generation of ELC EVEN could reach a maximum speed of 70 km/h (43 mph) on-road, and had a cruise speed of 50 to 55 km/h (31 – 34 mph) on-road and 20 to 40 km/h (12 – 24 mph) on various terrains. They had a ground pressure of 440 grams per cm² (6.2 lbs per in²) and were able to cross a 1.8 m (5.9 ft) wide trench, or an 80 cm (31 in) deepwater surface. They had a turning radius of 5.5 m (18 ft) and a maximum climb angle of 60% to 70%. The range was 350 to 450 km (217 – 279 miles) with internal fuel tanks, and it appears unprotected external fuel tanks could be added, raising the maximum range to 500 km (310 miles).

It is reported that, because of the vehicle’s lightweight and small dimensions, it could be carried by a “Piasecki 4I” helicopter – most likely a designation for the Piasecki H-21C, a transport helicopter of which the French Army and Air Force had bought 98 examples of. A couple of other Piasecki models were used by France, but they had been bought by the Navy and were acquired in lesser numbers. The EVEN could apparently also be transported by another helicopter, the “YH I7 A”, though more details about this vehicle are unknown. The at the time new French transport plane, the Noréclair, was reported to be able to load an ELC EVEN in its cargo bay. The two versions of the turret could be exchanged within four hours, and just a single vehicle was involved in the trials of November 1957, being given a different turret depending on the tests which had to be undertaken. This prototype had been completed throughout June 1957 and was subject yo less extensive, preliminary trials during that month.

The ELC EVEN prototype fitted with dual 30mm turret (left) and the 90mm-armed turret (right). Source: French Military Archives

The 30 mm-armed model, designed to operate against infantry and lightly armored vehicles, featured two HS.825 30 mm guns, firing 30×113 mm shells at a muzzle velocity of about 1000 m/s (3280 fps). They were fed by 85-shots clips, with one already loaded and one other in reserve, meaning that it had a total of 340 rounds at its disposal. The HS.825 was originally developed as an aircraft gun but had rather respectable armor penetration against armored personnel carriers and even light tanks such as the PT-76. With API (Armor-Piercing Incendiary) ammunition, it could penetrate 30 mm (1.18 in) of armor at one kilometer (1093 yards), and up to around 100 mm (3.9 in) at point-blank range. The guns could be fired either in salvo or shot-by-shot. The vehicle was also armed with two 7.5 mm AA52 machine guns, one on each side of the vehicle. These were fed by 300-rounds belts, with five belts in total for each machine gun, meaning the vehicle could fire a total of 3,000 7.5 mm rounds before running out of ammunition.

The 90 mm-armed model, which was designed to take up the original ELC’s role of dealing with enemy tanks, was armed with a DEFA D 919 low-pressure gun on the right side of the turret. This gun could fire two different anti-tank shells: the Brandt ‘Energa’, a shell with an effective range of about 700 m (765 yards) and which could penetrate about 300 mm (11.8 in) of armor or a newer Brandt shell with an effective range of about a kilometer and similar penetration values. The vehicle featured a 5-shot drum autoloader, with a reload time of two seconds between each shot. Twenty-five shells were carried in an ammunition locker in front of the gunner, in addition to the five already loaded in the autoloader. Unlike the first ELC EVEN prototype, the breech was located inside the turret, meaning it could be reloaded by the gunner without having anyone venturing outside of the tank. This feature was quite impressive on such a tiny vehicle, as even on the larger AMX-13 light tanks, the crews had to leave the vehicle to reload the drum magazines once they ran out. The turret also featured a coaxial 7.5 mm AA52 machine gun with 1,200 rounds.

A pre-series vehicle of each version undergoing trial between 1961 and 1963. Source: US Department of Defence Military Review, September of 1963

Continued Development of the 90 mm Armed Vehicle

The 90 mm armed turret that was presented on the 1957 prototype was armed with the DEFA D 919. Plans were already made by November to replace that gun with a newer model. The main feature of that newer gun was the ability to fire the 90 mm DEFA feathered shell at a muzzle velocity of 760 m/s (2493 fps). The ability to fire that shell, which could already be used by the only competitor the ELC EVEN still had, the ELC AMX, was requested by the French Military after the first presentation of the 90 mm armed turret in June 1957. The ability to fire another shell, the “G” non-rotating HEAT shell, at a muzzle velocity of 700 m/s (2296 fps), was also requested.

A temporary solution was devised by Even in order to allow his ELC to fire the DEFA shell without requiring extensive changes to the turret. This consisted of the DEFA projectile and a Brandt socket shortened by 38 mm (1.4 in), resulting in a 625 mm (24.6 in)-long shell. The D 919 gun, modified to fire that shell, was designated D 919 A. However, making the D 919 A able to fire the shell at a velocity of 760 m/s required a high pressure of 1300 kg/cm² (18,490 psi), which was judged acceptable for a prototype, but not for future serial-production.

By March 1959, following the success of the 1957 trials, a pre-series order for 5 ELC EVENs was formulated by the French Army. It was requested that the EVENs should be able to fire the DEFA feathered shell in its original configuration, meaning the shell would have a total length of 758 mm (29.8 in) using the DEFA socket. The original shell could be fired at muzzle velocities of 760-770 m/s (2493 – 2526 fps) with more accuracy and in safer conditions than with a Brandt socket. The revised version of the D 919 A gun modified to fire the original DEFA shell did not take more internal space, but the barrel was 30 cm (11.8 in) longer in order to improve the vehicle’s accuracy, the D 919 B could also fire the DEFA shell with the Brandt socket, or the 656 mm (25.8 in)-long Brandt-ENERGA shell. The “G” HEAT shell could not be fired from the D 919 B though, and required another gun, the D 915 (which was employed in the ELC AMX Bis). It appeared that it was impossible to fit this gun on the EVEN turret, and it appears that plans to fire the G shell were canceled without any D 915-armed EVEN prototype being manufactured.

The prototype refitted with what is presumably a D 919 A 90mm gun. Source: French Military Archives

Pre-Series Stage & the Doctrine of the ELC

Ten pre-series ELC were ordered in March 1959. Five were to use the D 919 B 90 mm gun, and five others to be fitted with the 30 mm turret. Such a large number of vehicles was beyond the capabilities of the company behind Even’s efforts, Brunon-Valette. Production was undertaken by one of the giants of the French arms industry, Hotchkiss. The pre-series was completed in 1961.

A photo from the same photoshoot. Source: Char Français (see bibliography)

The objective for the ELC EVEN pre-series was to perform far more extensive trials in operational units in order to seek American funding if the vehicles were successful. Out of the ten new vehicles, seven were given to various units to be tested in operations, one remained at its factory for further trials and one was kept by the French military to continue studying the design. The last one was sent to the Aberdeen Proving Grounds in Maryland in order to perform trials with American officials and hopefully unlock American funding.

Frontal view of a pre-series ELC EVEN 30 (registered as 224 0489). Source: Char Français

By this time, the use of the ELC in the French military doctrine had been developed pretty extensively. The plan was to produce massive numbers of these small vehicles. At least in the minds of French military theorists, these could be extremely effective anti-tank machines and would be more useful than main battle tanks or heavier vehicles in urban terrain. While the ELC EVEN did indeed have plenty of qualities, such as respectable firepower for its size and the ability to be airlifted, it would very likely not have been able to perform in such roles, as it was far from flawless. It had a crew of just two men, repeating what was perhaps the worst mistake of French armored development in the interwar period, as the commander/gunner would most likely be considerably overburdened. The vehicle’s protection was obviously abysmal, and while its gun was somewhat capable, the capacity of the ELC platform to evolve over time and continue improving its firepower to face newer threats was limited.

For those reasons, the ELC EVEN, while getting a lot closer to mass-production than a lot of other French prototypes of the 1950s, was eventually canceled. The vehicle was indeed unable to access American funding. France, during the early 60s, under President Charles de Gaulle, was already very stretched out in terms of the military budget. Massive funding was already going into the development of a credible nuclear program that included submarines, planes and ballistic missiles, as well as the development of a common tank project with West Germany that would eventually branch out and become the AMX-30. Funding for the mass-production of a vehicle like the ELC EVEN was simply out of the question. It appears tests on the project stopped in 1963.

A vehicle of each type during operational trials. Source: Char Français

Surviving ELC EVENs

Surprisingly enough, for what was only a pre-series, three ELC EVEN have survived to this day. One, fitted with a 30 mm turret, resides in the Tank Museum at Saumur, the largest in France and one of the largest collections of Europe. It is, interestingly enough, one of the only vehicles of the museum in which people can actually enter. This was originally meant for children. The vehicle is exposed, with its hull and turret hatches open, in the small kid’s area of the museum.

Another ELC EVEN, armed with a 90 mm gun, is also in the possession of the Saumur Tank Museum. It appears that it is not in the permanent exposition space, but instead, it is occasionally displayed in temporary expositions. It is still in running condition and is sometimes shown in movement during the museum’s demonstrations.
A third ELC EVEN, also armed with a 90mm gun, decorates the Carpiagne military base, near Marseilles, in Provence.

The fate of the other vehicles is unknown. While most were most likely scrapped, it is not unimaginable to think Saumur’s vast vehicle reserves (the museum has around 200 vehicles on show, but 500 in reserve) may house one or more remaining ELC EVENs. It should be noted that the ELC EVEN’s competitor, the ELC AMX Bis, also has a prototype remaining at Saumur.

The ELC EVEN 30 prototype kept in the Saumur museum. Source: Alf van Beem via Wikimedia Commons
Saumur’s ELC EVEN 90. Source: C.Balmefezol via Char Français
A frontal view of the ELC EVEN 90 preserved at Carpiagne military base. Source: Olivier Carneau


A 30 mm-armed version of ELC EVEN, as it stands today in the Saumur tank museum in France.


An ELC EVEN version armed with the DEFA D 919 low-pressure gun, as it stands in the Saumur tank museum.

Both of these illustrations were produced by Brian Gaydos, funded by our Patreon Campaign.

ELC EVEN (Pre-Series) Specifications

Dimensions (L-W-H) 5.30 x 2.15 x 1.60 meters (17.3 x 7 x 5.2 ft)
Weight, battle ready 6.7 tonnes (7.3 tons)
Crew 2 (commander/gunner and driver/loader)s
Engine SOFAM 168 hp
Suspension Leaf springs
Speed (road/off road) 70 km/h / ~40 km/h (43 – 24 mph)
Range (road) ~350 km (217 miles)
Armament Main: A 90 mm D 919 B, 5 (pre-loaded) + 25 rounds (90 mm version)/ Two HS.825 30 mm autocannons (30 mm-armed version), 170 (pre-loaded) + 170 rounds
Secondary: One AA 52 coaxial machine gun, 1,200 rounds (90 mm-armed version) / Two AA 52 machine guns, 1,500 rounds each/3000 total (30 mm-armed version)
Armor 8-15 mm (0.3 – 0.59 in)
Total built 1 prototype, 10 (5 90 mm armed and 5 30 mm-armed) pre-production vehicles

Sources

French Military Archives of Châtellerault:
Documents from the 1957 trials: https://imgur.com/a/tUltJQJ
Documents from the May of 1959 trials: https://imgur.com/a/mgb47xb
www.chars-francais.net


Categories
Cold War French Prototypes

Lorraine 40t

France (1952)
Medium tank – 1 prototype

The 50 tonne tank project

During the late 1940s and early 1950s, France was developing a new tank to replace the now obsolete captured German Panther and the short lived ARL 44 heavy tank in French military service.
This project, designated M4, aimed at producing a vehicle weighing 50 tonnes which would allow France to compete with other tank producing nations on the battlefield and in export. The main goal was the revival of the French tank industry that had been one of the best in the world prior to WW2.
The M4 project was eventually handed over to the AMX company (Atelier de Construction d’Issy-les-Moulineaux) which created the AMX 50 tanks. However, as the tank development continued on its course through the 1950s, the tank weight grew from the initial specified 50 tons to more than 60 tons, due to the attempts to upgun and uparmor the vehicle. This was necessary to cope with new Soviet tank designs. This led the authorities to the search for an another firm able to provide an alternative 50-tonne design.
The 100mm armed AMX 50 designThe 1945 plans for the AMX M4

The Lorraine Company

In the early 1900’s the French engineering and manufacturing companies Lorraine and De Dietrich merged to form Lorraine-Dietrich. They designed and produced some of the first automobiles. By the first decade, the company’s factory in Luneville, Lorraine was renowned in the automobile industry having produced great vehicles and hired engineers such as the famed Ettore Bugatti in their workshop.
The Lorraine-Dietrich plant in the 1920s
After WW1, the company continued production of automobiles and aircraft engines, but in 1928 De Dietrich sold their share of the company and from then on, the company was renamed Lorraine. Production of automobiles ceased by 1934 and Lorraine began focusing on military work. One such military product was the Lorraine 37L armored supply tractor used by France and later Germany during WW2.
The Lorraine 37L military tractor
With yet another war over, Lorraine, like so many private companies in France, was financially crippled. It tried to rebuild its military and rail locomotive business. Lorraine was eventually bought by an American company, producing trucks before entering obscurity after the 1950s.

The Canon D’Assaut Lorraine

During the development of the M4 tank in the late 1940s, the Lorraine company was developing and testing a self-propelled gun (SPG) that had a visual similarity to the WW2 Jagdpanzer IV. It was called the Canon D’Assaut Lorraine. Weighing in at 25 tonnes, this SPG was equipped with a version of the 100 mm SA47 and could reach a top speed of 60 km/h (37 mph). It had a novel Veil Picard pneumatic air core tire/ road wheel as opposed to a steel road wheel, lowering the weight of the tank. The road wheels were mounted on torsion bar suspension with hydraulic shock absorbers. Many of its components would be used in future Lorraine tank development such as the Lorraine 40t and the various Lorraine experimental self-propelled artillery guns until 1953, when the project was abandoned.
The Canon D’Assaut LorraineThe Canon D’Assaut Lorraine

Lorraine 40t specifications

Dimensions 10.8  x 3.30 x 2.85 m
35ft 5in x 10ft 10in x 9ft 4in
Total weight, battle ready 39.7 tonnes
Crew 4 (driver, commander, gunner, loader/radio)
Propulsion Maybach HL 295, 850 hp
Suspension Torsion bar suspension with Veil Picard tires
Speed (road) 60 km/h (37 mph)
Armament 100 mm SA47 gun
7.5 mm coaxial machine-gun
7.5mm AA machine-gun
Armor Hull front: 40 mm @ 58°
Hull side: 30 mm @ 30°
Turret: 45 mm @ 55°

Links

The Lorraine 40t on Chars Francais
The Cannon D’Assaut Lorraine on Chars Francais
The WoT Wiki page on the Lorraine 40t
The AMX-50 on Wikipedia
About the Lorraine 40t’s depression on FTR
The Lorraine factory

The development of Lorraine 40t

The Lorraine company kept a close eye on the designs made by AMX, and were tasked with producing a lightweight variant of the AMX 50. Their design mated a hydraulically operated oscillating turret to the then experimental Canon D’Assaut Lorraine’s chassis, thus creating the Lorraine 40t. Similar to the turret designed by FAMH (Compagnie des forges et aciéries de la marine et d’Homécourt) for the AMX-50, the turret for the Lorraine 40t was designed in 2 sections. The lower section allowed the turret to rotate horizontally and the upper section could depress and elevate along with the gun with respect to the lower portion, with an elevation range of -8 degrees to +15 degrees.
Front view of the Lorraine 40t, showing the pike nose and oscillating turret
Front view of the Lorraine 40t, showing the pike nose and oscillating turret
Like on the AMX 50 project, the 100mm SA47 (The same version of the gun that the Canon D’Assaut Lorraine mounted) was chosen to be mounted in the turret, allowing the Lorraine 40t to achieve a similar amount of firepower as its heavier counterpart. Another notable feature the Lorraine 40t had in common with the AMX 50 was the introduction of a drum autoloader to the main armament with 50 rounds stored in ammo rack within the hull. The fact that the gun was mounted in an oscillating turret meant that engineers were able to easily install an autoloader mechanism without worrying about the possibility of the limited vertical movement of the gun within the turret. The commander and the gunner shared a linked firing system, allowing both crew members the ability to operate the gun.
Like many French tanks developed or prototyped during the post war period, the Lorraine 40t’s engine was of German design, inspired from the many German Tiger and Panther tanks that littered the French countryside, a few of which entered French military service after the WW2. In the case of the Lorraine 40t, a French built turbocharged water cooled Maybach HL 230 V12 called the HL 295 was used, producing 850hp at 3000 RPM. This engine was also used to power the AMX-50. Using an engine which was designed to propel much heavier tanks such as the Tiger and AMX-50, allowed the Lorraine 40t to reach speeds of up to 60 km/h (37 mph) during testing with relative ease. This was roughly 10 km/h faster than the AMX50.
In order to meet the requirements of weighing less than the then overweight AMX-50, the tank had drastically thinner armor. It was of welded construction, with thicknesses of 25 to 40mm. The tank was equipped with 10 Veil Picard tires (5 on each side) instead of steel road wheels to save weight. The inclusion of these tires also increases crew comfort by reducing vibrations and shocks when the vehicle was in motion. These attributes were carried over from the Canon D’Assaut Lorraine.
The Lorraine 40t undergoing some maintenance
The Lorraine 40t undergoing some maintenance
Another notable feature of the Lorraine 40t was the pike nose design of the tank. It was similar to the second hull design of the AMX 50, which was inspired by several Soviet tank designs of its time like the IS-3, which had appeared publicly during the 1945 victory parade in Berlin. This was done in order to maximize the protection of the vehicle within the weight constraints. However, the effect of this design choice was probably limited, given that the vehicle had only 40 mm of frontal armor.
Two prototypes were finished in 1952 and testing of the vehicles went on through 1953 and 1954 but never reached the production stage.

The end of the line

Because America, as part of NATO, supplied surplus M47 Pattons to the French during the outbreak of the Korean war, interest in the AMX-50 and Lorraine 40t wavered. The high cost of producing and maintaining these vehicles eventually caused the cancellation of the tanks related to the M4 project in favor of the vehicles provided by NATO. Further development of a French main battle tank would not surface again until the Franco-German collaboration which sprouted the Leopard and AMX 30 in the late 1950s. The Lorraine 40t and its variants were supposedly the final attempts of Lorraine to reenter the military market.
An article by Velocity
A French M47 Patton at the Saumur tank museum
A French M47 Patton at the Saumur tank museum

Gallery



The Lorraine 40t medium tank – illustration by Jaroslaw Janas